期刊文献+

聚酰胺非晶相弹性性质预测

The Predictions of Elastic Properties of Amorphous Phase of Polyamides
下载PDF
导出
摘要 聚合物基复合材料宏观有效力学性质的确定需要复合材料中各个组分的基本力学性质。采用基于拓扑的关联指数法对11种典型聚酰胺非结晶相的体积模量、泊松比、杨氏模量、剪切模量等弹性性能进行了预测。结果表明,当温度从1K逐步增加到(Tg-20)K时,体积模量、杨氏模量和剪切模量随温度的增加呈指数规律减小;而泊松比则呈线性增加。当温度在玻璃化温度Tg附近(Tg-20)<T<(Tg+30)时,杨氏模量和剪切模量的大小急剧地从GPa量级减小到MPa量级;泊松比从大约0.42快速地增加到0.4999。体积模量在玻璃化温度Tg附近有一个明显的降低后,随温度的升高再次保持指数规律降低的趋势。在玻璃化温度以下对预测数据进行回归分析,获得了这些弹性性能与温度的相关关系。 The basic elastic properties of the components of polymer matrix composites are required for the prediction of effective property.The elastic properties of 11 polyamides,such as Poisson′s ratio,bulk modulus,Young′s modulus and shear modulus,were predicted by the connectivity indices method based on topology from their molecular structures.It shows that when the temperature rises from 1 K to(Tg-20)K,bulk modulus,Young′s modulus and shear modulus decrease exponentially,while the Poisson′s ratio increases linearly.And with the temperature rising from(Tg-20) K to(Tg+30) K,Young′s modulus and shear modulus decrease from GPa order magnitude to MPa order magnitude dramatically,while the Poisson′s ratio increases from about 0.42 to 0.4999 rapidly.After a drop of bulk modulus at the glass transition temperature,it decreases exponentially again with temperature increasing.The correlations between these elastic properties and temperature of 11 kinds of polyamides were obtained by linear or nonlinear regression respectively.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2011年第1期170-174,共5页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(10672138) 湖南省教育厅资助项目(07A071 04C682)
关键词 聚酰胺 关联指数法 泊松比 体积模量 杨氏模量 剪切模量 polyamide connectivity index method Poisson's ratio bulk modulus Young's modulus shear modulus
  • 相关文献

参考文献15

  • 1张平,王霞瑜,魏珊珊,等.尼龙6/无机粒子纳米复合材料直接制备方法:中国,ZL02139836.4[P].2004.11-17.
  • 2张平,尹久仁.聚合物基纳米复合材料跨层次本构理论模型[J].湘潭大学自然科学学报,2003,25(4):22-27. 被引量:2
  • 3张平,邓旭辉,许福,肖映雄,尹久仁.高聚物多尺度结构模型[J].湘潭大学自然科学学报,2005,27(1):1-5. 被引量:2
  • 4Randi M. The connectivity index 25 years after [J ]. Journal of Molecular Graphics and Modeling, 2001, 20(1): 19-35.
  • 5Seitz J T. The estimation of mechanical properties of polymers from molecular structure[J]. J. Appl. Polym. Sci., 1993, 49: 1331- 1351.
  • 6Bonchev D. Overall connectivity-a next generation molecular connectivity[J]. Journal of Molecular Graphics and Modeling, 2001, 20(1) : 65-75.
  • 7Estrada E, Molina E. Novel local (fragment-based) topological molecular descriptors for QSPR/QSAR and molecular design[J]. Journal of Molecular Graphics and Modeling, 2001, 20 (1): 54-64.
  • 8Raman V S, Maranas C D. Optimization in product design with properties correlated with topological indices[J]. Computers & Chemical Engineering, 1998, 22(6) : 747-763.
  • 9Bieerado J. Prediction of polymer properties [ M ]. 3rd ed. New York: Marcel Dekker, 2002: 371-454.
  • 10Arends C B. On the applicability of the Lennard-Jones potential function to amorphous high polymers[J]. J. Appl. Polym. Sci. , 1993, 49. 1931-1938.

二级参考文献11

  • 1Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions[J].Acta Metall,1973,21:571-574.
  • 2Hill R.Theory of mechanical properties of fibre-strengthened materials III,Self-consistent model[J].J Mech Phys Solids,1965,13:189-198.
  • 3Hill R A.Self-consistent mechanics of composite materials[J].J Mech Phys Solids,1965,13:213-222.
  • 4Voigt W.über die Beziehung zwischen den beiden Elastizit tskonstanten isotroper K rper [J].Wied.Ann.,1889,38:573-587.
  • 5Reuss A.Berechnung der Flie grenze von Mischkristallen auf Grund der Plastizit tsbedingung f r Einkristalle [J].Z Angew Math Mech,1929,9:49-58.
  • 6Hashin Z,Shtrikman S.On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity[J].J Mech Phys Solid,1962,10,335-342.
  • 7Hashin Z,Shtrikman S.A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials[J].J Mech Phys Solid,1963,11:127-140.
  • 8Milton G W.Bounds on the electro-magnetic,elastic and other properties of two-component composites [J].Phys Rev Lett,1981,46(8):542-545.
  • 9Maghous S,Creus G J.Periodic homogenization in thermoviscoelasticity:case of multilayered media with ageing [J].International Journal of Solids and Structures,2003,40(4):851-870.
  • 10Christentensen R M,Lo K H.Solutions for effective shear properties in three phase sphere and cylinder models[J].J Mech Phys Solids,1979,27:315-330

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部