期刊文献+

求解RCPSP问题的带分布估计的差异演化算法 被引量:5

Differential evolution algorithm with estimation of distribution for solving RCPSP problem
下载PDF
导出
摘要 提出一种带分布估计的差异演化算法(DEED)用于求解资源受限项目调度问题(RCPSP)。该算法基于差异演化(DE)算法,利用分布估计算法(EDA)能够获得问题解空间的全局信息以及变量间的相互联系,以指导算法搜索过程,并对最优解的分布进行预测。DEED算法充分利用DE收敛速度快和EDA全局搜索优点。经标准问题库(PSPLIB)的单模式问题集验证,并与当前流行的算法进行比较,表明了DEED算法的有效性。 This paper presents a Differential Evolution algorithm with Estimation of Distribution(DEED)for solving resourceconstrained project scheduling problem.DEED obtains the global information of solution space and interaction among variables based on differential evolution algorithm.The information is used to guide the search process of the algorithms and predict the distribution of the optimal solutions.The algorithm can take full advantage of fast convergence of DE and the global search of EDA.Finally,the DEED algorithm is compared with state-of-the-art algorithms using a set of standard problems available in the literature.The experimental results validate the efficiency of the proposed algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第4期1-4,32,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60674078 No.50975039)~~
关键词 资源受限 项目调度 差异演化 分布估计算法 resource constrained project scheduling differential evolution estimation of distribution algorithm
  • 相关文献

参考文献1

二级参考文献15

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 2Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies[C]//Proceedings of ECALSi European Conference on Artificial Life. Elsevier Publishing, 1991:134-142.
  • 3Dorigo M, Manieszo V, Colorni A. The Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Transaettons on Systems, Man, and Cybernetics - Part B, 1996,26 ( 1 ) : 29-41.
  • 4Dorigo M,Gambardella L M. Ant Colony System:A Cooperative Learning Approachto the Traveling Salesman Problem[R]. 96- 05, INDIA. UniversitC Libre de Bruxelles, 1996.
  • 5Stuztle T, Hoos H. Improvements on the Ant System: Introducing MAX-MIN Ant System[M]//Smith G D, Steele N C, eds. Artifidal Neural Networks and Genetic Algorithms. 1998:245-249.
  • 6Dorigo M, Di Caro G. The ant colony optimization meta heuristic [C]//Come D, Dorigo M, Glover F, eds. New Ideas in Optimization. London, UK: McGraw-Hill, 1999 : 11-32.
  • 7I.arrafiaga P, Lozano J A. Estimation of Distribution Algori thms. A New Tool for Evolutionary Computation[M]. Boston: Kluwer Academic Publishers,2002.
  • 8Reinelt G. The Traveling Salesman: Computational Solutions for TSP Applications [C]//LNCS. volume 840, Springer Verlag, 1994.
  • 9Rosenkrantz D J, Stearns R E, Lewis P M. An analysis of several heuristics for the traveling salesman problem[J]. SIAM J. Comput. , 1977,6 :563-581.
  • 10Pelikan M,Goldberg D E, Lobo F. A Survey of Optimization by Building and Using Probabilistic Models [R]. IlliGAL Report No. 99018. Urbana, Illinois: University of Illinois at Urbana- Champaign, Illi nois Genetic Algorithms Laboratory, 1999.

共引文献5

同被引文献38

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部