摘要
将情感识别中的特征选择看成组合优化问题,从四种生理信号EMG、ECG、RSP、SC中抽取统计特征,将参数可调的遗传算法和K-近邻算法相结合尝试找出最能"代表"某一情感状态joy、anger、sadness、pleasure的最优情感特征组合模式。仿真表明,该方法是有效的。
The feature selection in emotion recognition is regarded as the combinational optimisation problem,statistical features are extracted from four physiological signals: ECG,EMG,SC and RSP,the genetic algorithm with adjustable parameters is integrated with the K-nearest neighbour algorithm for trying to find out optimal emotional feature combination model which represents exactly the relevant emotional states: joy,anger,sadness and pleasure.Simulation shows that the method is effective.
出处
《计算机应用与软件》
CSCD
2011年第2期246-248,276,共4页
Computer Applications and Software
关键词
特征选择
生理信号
最优情感特征子集
Feature selection Physiological signals Optimal emotional feature subset