期刊文献+

连续混沌系统类随机性的符号熵分析法 被引量:1

Analysis of random-like property of continuous chaotic system with symbol entropy
下载PDF
导出
摘要 采用符号熵分析法,分析和讨论了经典的Lorenz连续混沌系统和Rssler连续混沌系统的类随机性强弱。先将连续混沌系统产生的实数序列转化为二进制序列,然后进行编码,计算其符号熵,绘制其符号熵图,并深入讨论了系统参数和初始值对符号熵的影响。数值仿真分析表明,符号熵法能定量区别不同连续混沌系统类随机性的强弱。同时作为随机源,Lorenz混沌系统比Rssler混沌系统好。 Random-like properties of typical Lorenz chaotic system and Rssler chaotic system are analyzed and discussed by using symbol entropy algorithm.Firstly,the binary sequences are obtained from real-valued sequences generated by continuous chaotic systems,then are coded.Symbol entropies of the binary sequences are calculated and their curves are plotted.Influences of system parameter and initial value on symbol entropy are discussed.Simulation result shows that symbol entropy algorithm can be used to identify the strength of random-like properties of continuous chaotic systems,and Lorenz chaotic system is better than Rssler chaotic system as the source of randomness.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第5期40-42,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60802004 广东省科技厅科技计划资助项目(No.2007B010200041)~~
关键词 混沌 类随机性 符号熵 LORENZ混沌系统 Rssler混沌系统 chaos random-like property symbol entropy Lorenz chaotic system Rssler chaotic system
  • 相关文献

参考文献7

  • 1Chiaraluce F, Ciccarelli L, Gambi E, et al.A new chaotic algo- rithm for video encryption[J].IEEE Transactions on Consumer Electronics, 2002,48 (4) : 838-844.
  • 2权安静,蒋国平,左涛,陈婷.基于超混沌序列的分组密码算法及其应用[J].南京邮电学院学报(自然科学版),2005,25(4):80-84. 被引量:9
  • 3徐全生,李震,杜旭强.一种基于混沌序列的图像加密算法[J].小型微型计算机系统,2006,27(9):1754-1756. 被引量:14
  • 4Bennett C H, Peter G S, Li M, et al.Information distance[J].IEEE Transactions on Information Theory, 1998,44(4) : 1407-1423.
  • 5Eckmann J P, RueUe D.Ergodic theory of chaos and strange at- tractors[J].Reviews of Modern Physics, 1985,57(3 ) : 617-656.
  • 6Yang Z J, Zhao G Z.Application of symbolic techniques in de- tecting determinism in time series[C]//Proeeedings of 20th Annu- al International Conference of IEEE Engineering in Medicine and Biology Society.Washington DC: IEEE Computer Society, 1998: 2670-2673.
  • 7Yao W, Essex C, Yu P, et al.Measure of predictability[J].Physi- cal Review E,2004,69:1-13.

二级参考文献8

共引文献18

同被引文献13

  • 1田玉楚,徐功仁.非线性随机系统之熵分析[J]华东化工学院学报,1988(S1).
  • 2田玉楚,徐功仁.浑沌系统的统计熵方法[J]华东化工学院学报,1988(S1).
  • 3Shannon CE.A mathematical theory of communication. Bell System Technical Journal, The . 1948
  • 4Renyi A.On measures of entropy and information. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability . 1961
  • 5Pincus S M.Approximate entropy (ApEn) as a complexity measure. Chaos . 1995
  • 6Pincus S M.Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America . 1991
  • 7Cencini Met al.Chaos From Simple models to complex systems. Journal of Women s Health . 2010
  • 8PINCUS S M.Approximate entropy as an irregularitymeasure for financial data. Econometric Reviews . 2008
  • 9Gao R X.Approximate entropy as a diagnostic tool formachine health monitoring. Mechanical Systems andSignal Processing . 2007
  • 10Daniel Perez-Canales,Jose Alvarez-Ramirez.Identification of dy-namic instabilities in machining process using the approximate en-tropy method. International Journal of Machine Tools&Manu-facture . 2001

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部