期刊文献+

面向推荐系统的音乐特征抽取 被引量:8

Music feature extraction method for recommendation system
下载PDF
导出
摘要 音乐推荐系统是指根据用户的历史浏览数据,从候选库中推荐给用户可能喜欢的音乐的一种新型网络服务。该系统的关键在于需要对整个数据库按照音乐风格进行分类,基于此提出一种新的音乐特征处理方法来完成音乐库分类,以有效实现音乐推荐。该方法首先为候选音乐库构建常规的音乐特征数据集,然后基于分形理论对数据集进行属性约简,获取每一首音乐的推荐特征向量,并且依据特征向量的特点,定义了一种新的距离度量方法。在包含六种风格的音乐数据库的实验中,仿真结果证明了提出的音乐推荐特征和距离度量的有效性,与现有的基于内容的音乐检索研究相比,音乐推荐特征的使用极大地降低了对数据库存储量的需求,对音乐推荐系统的网络开发具有很好的应用价值。 Music recommendation system is to provide needful music for users from the candidate music library based on analyzing the user’s browsing history data.The classification of whole database according to music style is the key point of this system.Then this paper proposes a novel music feature for achieving music classification.Firstly the regular data sets of music feature are constructed.Then the attribute of data sets is reduced based on fractal dimension theory and the recommendation features are obtained for each music.Also a new distance measure is given for the similarity of this recommendation feature.During the experiment based on database including six styles of music,simulation results demonstrate the effectiveness of the proposed music recommendation feature and the new distance.Compared with the study of current content-based music retrieval,music recommendation feature can greatly reduce the requirement of database memory and provide a promising application for the network exploitation of music recommendation system.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第5期130-133,共4页 Computer Engineering and Applications
基金 江苏省现代教育技术研究所课题No.2007-R-4704~~
关键词 音乐推荐系统 分形维 特征抽取 向量相似度 music recommendation system fractal dimension feature extraction vector similarity
  • 相关文献

参考文献11

二级参考文献90

  • 1柳群英.基于内容的音频信息检索技术[J].现代情报,2005,25(6):91-93. 被引量:7
  • 2宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 3全笑梅,张鸿宾.基于小波包域听觉感知分析的统计音频水印算法[J].电子学报,2007,35(4):673-678. 被引量:11
  • 4Yu L, Liu H. Efficient feature selection via analysis of relevance and redundance [J]. The Journal of Machine Learning Research, 2004, 5(10) : 1205-1224
  • 5Narendra P M, Fukunaga K. A branch and bound algorithm for feature subset selection [J]. IEEE Trans on Computer, 1977, 26(9): 917-922
  • 6Cover T M. The best two independent measurements are not the two best [J]. IEEE Trans on Systems, Man, and Cybernetics, 1974, 4(1) : 116-117
  • 7Dumais S, Platt J, Heckerman D, et al. Inductive learning algorithms and representations for text categorization [C] // Proc of the CIKM-98, the 7th ACM Int Conf on Information and Knowledge Management. New York: ACM, 1998: 148- 155
  • 8Lewis D D. An evaluation of phrasal and clustered representations on a text categorization task [C]//Proc of the 15th ACM Int Conf on Research and Development in Information Retrieval. New York: ACM, 1992:246-254
  • 9Schutze H, Hull D D, Pedersen J O. A comparison of classification and document representations for the routing problem [C] //Proc of the SIGIR 95, the 18th ACM Int Conf on Research and Development in Information Retrieval. New York: ACM, 1995:229-237
  • 10Yang Y, Pedersen J O. A comparative study on feature selection in text categorization [C]//Proc of the 14th Int Conf (ICML'97). San Francisco: Morgan Kaufmann, 1997: 412-420

共引文献55

同被引文献154

引证文献8

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部