期刊文献+

手指静脉认证系统的算法研究 被引量:3

Algorithm Research of Finger Vein Authentication
下载PDF
导出
摘要 提出一整套手指静脉认证系统的图像处理和静脉模板匹配算法。算法采用Sobel算子结合首遇跟踪法检测手指边缘,然后采用最小均方误差原则拟合手指边缘并对图像进行旋转校正归一化;基于最大曲率模型的思想,采用四个方向梯度算子提取静脉;为降低拒真率和提高匹配速度,对静脉图像进行膨胀、三值化和两次压缩,建立包含静脉、背景和模糊区的紧凑型指静脉模板,并将测试模板与登记模板进行交叉点对点的匹配。实验结果表明,该算法兼顾了效率和准确性,只要手指没有反转,就可以得到接近100%的识别率,与传统匹配算法相比在速度和有效性方面都具有明显优势。 A full set of algorithms on image processing and recognition for finger vein authentication was proposed. A new image normalization algorithm was designed. During normalization, a Sobel operator incorporating the first meet tracing was used to detect finger edges, and then image correction with rotation was done after the finger edges were fitted under the least mean-square error principle. Based on maximum curvature models, finger vein was extracted by using four direction gradient operators. To decrease False Rejection Rate (FRR) and increase recognition rapid, after expanded, the image was segmented with three levels and compressed to become a more compact vein pattern including finger vein, background and vague parts. At last, a new matching algorithm with point to point between mask and test patterns was put forward. Our experiments verify that our methods outperform traditional ones on speed and effectiveness Its recognition rate is up to 100%, with a finger set horizontally
出处 《光电工程》 CAS CSCD 北大核心 2011年第2期90-96,共7页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60472063) 广东省自然科学基金资助项目(8451008901000615)
关键词 生物图像处理 指静脉识别 旋转校正 模板匹配 最大曲率模型 biology image processing finger vein recognition rotation correction pattern matching maximumcurvature model
  • 相关文献

参考文献3

二级参考文献10

  • 1王科俊,丁宇航,庄大燕,王大振.手背静脉图像阈值分割[J].自动化技术与应用,2005,24(8):19-22. 被引量:16
  • 2季虎,孙即祥,姚伟.图像的小波矩[J].电路与系统学报,2005,10(6):132-136. 被引量:5
  • 3李庆武,陈小刚.小波阈值去噪的一种改进方法[J].光学技术,2006,32(6):831-833. 被引量:31
  • 4Zanan H D,Lovhoiden G,Deshmukh H..Design of a clinical vein contrast enhancing profector[J].SHE, 2001,4254 : 204-215.
  • 5Lovhoiden G.,Deshmukh H,Zanan H D.Clinical evaluation of vein contrast enhancement[J].SPIE, 2002,4615 : 61-70.
  • 6冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2005.
  • 7Miura N, Nagasaka A, Miyatake T. Feature Extraction of Finger-Vein Patterns Based on Repeated Line Tracking and Its Application to Personal Identification. Machine Vision and Applications, 2004, 15(4): 194-203.
  • 8Ridler T W, Calvard S. Picture Thresholding Using an Iterative Selection Method. IEEE Trans on Systems, Man and Cybernetics, 1978, 8(8): 630-632.
  • 9Ding Yuhang, Zhuang Dayan, Wang Kejun. A Study of Hand Vein Recognition Method // Proc of the IEEE International Conference on Mechatronics and Automation. Niagara Falls, Canada, 2005, IV: 2106-2110.
  • 10马殿炜.基于距离变换的嵌入式马尔科夫模型在手指静脉识别中的应用[D].吉林大学,2005.

共引文献56

同被引文献20

  • 1王科俊,丁宇航,王大振.基于静脉识别的身份认证方法研究[J].科技导报,2005,23(1):35-37. 被引量:27
  • 2Bazen A M, Gere.z S H. Systematic methods for the compu- tation of the directional fields and singular points of finger- prints[J ]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence,2002,24(7) :905 - 919.
  • 3Zeman H D, Lovhoiden G, Deshmukh H. Design of a clini- cal vein contrast enhancing projeclor [ J ]. SPIE. 2001, 4254:204 - 215.
  • 4王科俊,袁智.基于小波矩融合PCA变换的手指静脉识别[J].模式识别与人工智能,2007,20(5):692-697. 被引量:32
  • 5Miura N,Nagasaka A,Miyatake T. Feature Extraction of Finger Vein Patterns Based on Repeated Line Tracking and Its Application to Personal Identification[J].Machine Vision and Applications,2004,(04):194-203.
  • 6Miura N,Nagasaka A,Miyatake T. Extraction of Fingervein Patterns Using Maximum Curvature Points in Image Profiles[J].IEICE Transactions on Information and Systems,2007,(08):1185-1194.
  • 7Sun Xiao,Lin Chunyi,Li Mingzhong. A DSP-based Finger Vein Authentication System[A].Shenzhen,China:[s.n.],2011.333-336.
  • 8Yang Jinfeng,Li Xu. Efficient Finger Vein Localization and Recognition[A].Istanbul,Turkey:[s.n.],2010.1148-1151.
  • 9Chaudhuri S,Chatterjee S,Katz N. Detection of Blood Vessels in Retinal Images Using Two-dimensional Matched Filters[J].IEEE Transactions on Medical Imaging,1989,(03):263-269.doi:10.1109/42.34715.
  • 10Wu Jianda,Liu Chiung-Tsiung. Finger-vein Pattem Identification Using SVM and Neural Network Technique[J].Expert Systems with Applications,2011,(11):14284-14289.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部