期刊文献+

基于Bi^(3+)Ga^(3+)Al^(3+)共掺高掺铒光纤的短线腔激光器

Short linear cavity laser using high concentration erbium-doped fiber co-doped with Bi^(3+)Ga^(3+)Al^(3+)
下载PDF
导出
摘要 短线腔掺铒光纤激光器由环形器(OC)、自制的Bi3+Ga3+Al3+共掺高浓度掺铒光纤(BiGaAl-EDF)、均匀光纤布拉格光栅(UFBG)和波分复用器(WDM)组成。以OC作为全反射腔镜,UFBG为波长选择性部分反射腔镜,利用1 530 nm处吸收系数为84.253 dB/m的BiGaAl-EDF为增益介质,室温下获得了中心波长为1 544.31 nm、边模抑制比(SMSR)大于55 dB的激光输出。分析了BiGaAl-EDF长度对激光器输出特性的影响。结果表明:采用12 cm长的光纤实现了短线腔的窄线宽激光输出,在25 cm长度下,该激光器具有最小的起振阈值和最大的输出功率。测试表明,该短线腔激光器具有线性输出特性,并且其中心波长和输出功率不随时间的变化而发生漂移。 A simple and effective short linear cavity erbium-doped fiber laser was presented.The laser consisted of an optical circulator(OC),a segment of self-made high concentration erbium-doped fiber co-doped with Bi^3+Ga^3+Al^3+(BiGaAl-EDF),a uniform fiber Bragg grating(UFBG),and a wavelength division multiplexing(WDM).By using the OC as an all-reflection mirror and the UFBG written directly in the G652 fiber as a partial-reflection mirror and a wavelength selector,a stable wavelength oscillation with a center wavelength of 1 544.31 nm and a side mode suppression ratio(SMSR) of about 57 dB is achieved at room temperature.The impact of the length of BiGaAl-EDF on the laser's output characteristic was analyzed.With a 12 cm long BiGaAl-EDF as the gain medium,the oscillation output can be realized,and the laser has the minimal oscillating threshold and the maximal output power when the length of BiGaAl-EDF is 25 cm.This laser has a linear output characteristic and its output power and center wavelength do not drift with time.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2011年第2期503-506,共4页 High Power Laser and Particle Beams
基金 国家高技术发展计划项目 国家自然科学基金项目(60771008) 北京市自然科学基金项目(4052023) 新世纪优秀人才支持计划项目(NCET-06-0076)
关键词 激光技术 掺铒光纤激光器 短线腔 环形器 光纤布拉格光栅 laser technique erbium-doped fiber laser short linear cavity optical circulator fiber Bragg grating
  • 相关文献

参考文献7

  • 1Zenteno L A, Walton D T. Novel fiber lasers and applications[J]. Optics and Photonics News, 2003, 14(3) : 38-41.
  • 2Ai Mansoori M H, Abd Rahma M K, Mahamd A, et al. Widely tunable linear cavity muhiwavelength Brillouin erbium fiber lasers[J]. Opt Express, 2005, 13(9): 3471-3476.
  • 3Mao Xiangqiao, Yan Fengping, Wang Lin, et al. Incorporate, switchable dual wavelength fiber laser with Bragg gratings written in a polarization maintaining erbium doped fiber[J]. Opt Cornrnun, 2009; 282:93-96.
  • 4Feng Suncbun, Xu Ou, Lu Shaohua, et al. Single-polarization, switchable dual wavelength erbium-doped fiber laser with two polarization maintaining fiber Bragg gratings[J]. OptEapress, 2008, 16(16):11830-11835.
  • 5傅永军,郑凯,常德远,魏淮,延凤平,简水生.短腔的高浓度掺铒光纤激光器[J].光电工程,2007,34(11):46-49. 被引量:2
  • 6Randy G C, Desurvire E. Modeling erbium-doped fiber amplifiers[J]. IEEE Journal of Lightwave Technology, 1991, 9(2): 271-282.
  • 7Liaw S K, Jang W Y, Wang C J, et al. Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings[J]. ApplOpt, 2007, 46(12): 2280-2285.

二级参考文献8

  • 1傅永军,郑凯,简伟,简水生.Performance of optical amplifier employing silica host magnesium-aluminum-germanium co-doped erbium-doped fiber[J].Chinese Optics Letters,2005,3(4):187-189. 被引量:1
  • 2Govind P Agrawal.非线性光纤光学原理与应用[M].贾东方,余震虹.北京:电子工业出版社,2002.
  • 3Pavel Polynkin, Valery Temyanko, Masud Mansuripur, et al. Efficient and Scalable Side Pumping Scheme for Short High-Power Optical Fiber Lasers and Amplifiers [J]. IEEE Photonics Technology Letters, 2004, 16(9): 2024-2026.
  • 4Hiroji Masuda, Atsushi Takada, Kazuo Aida. Modeling the Gain Degradation of High Concentration Erbium-Doped Fiber Amplifiers by Introducing Inhomogeneous Cooperative Up-Conversion[J]. IEEE Journal of Lightwave Technology, 1992, 10(12): 1789-1799.
  • 5Nilsson J, Jaskorzynska B, Blixt P. Performance Reduction and Design Modification of Erbium-Doped Fiber Amplifiers Resulting from Pair-Induced Quenching [J]. IEEE Photonics Technology Letters, 1993, 5(12): 1427-1429.
  • 6Bor-Chyuan Hwang, Shibin Jiang, Tao Luo, et al. Performance of High-Concentration Er3+-Doped Phosphate Fiber Amplifiers [J]. IEEE Photonics Technology Letters, 2001, 13(3): 197-199.
  • 7Sugimoto N, Kuroiwa Y, Ito S, et al. Broad-band 1.5 μm emission of Er^3+ ions in bismuth- based oxide glasses for WDM amplifier[A]. LEOS'99 annualmeeting[C]. San Francisco, CA: IEEE, 1999, 2(8/11): 814-815.
  • 8Giles C Randy, Emmanuel Desurvire, Modeling Erbium-Doped Fiber Amplifiers [J], IEEE Journal of Lightwave Technology, 1991, 9(2): 271-282.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部