期刊文献+

基于导函数层序聚类的光谱成分预测方法研究(英文) 被引量:1

A New Color Component Prediction Method Based on First Derivative Clustering Analysis
下载PDF
导出
摘要 多光谱成像技术通过增加颜色通道的维数,成功的实现了基于光谱的颜色复制。然而,由于其颜色信息维数较高,此方法在提高色度精度的同时引入了较大的计算及存储压力。为此,最常用的方法就是通过对光谱数据进行分组,并利用每组光谱数据集中的主成分向量来对各个光谱曲线进行线性表示,从而实现数据的降维处理。提出了1种新的针对光谱数据导函数曲线的聚类分析方法,并利用伪逆算法进行光谱重建;本研究采用孟塞尔光泽色卡及无光泽色卡作为实验数据集,并将提出的导函数聚类分析法与现有的主成分分析法、聚类分析法以及色相角分类法相比较,实验结果证明其颜色预测精度在色度匹配及光谱匹配方面均优于现有方法。 By extending the number of signal channels to high dimensions, the multispectral imaging technology fulfils the spectral color reproduction. However, it also brings out calculating and storing problem because of the large spectral database. The solution for this matter is to divide the database into several subgroups and find their basic components for each individual subgroup for linear representation[1] A new approach was proposed for grouping similar spectrum from spectral database. Based on the first derivative of each spectral curve, we used agglomerative hierarchical cluster analysis to divide the database into ten groups and found their basic components by principal component analysis. The pseudo inverse method was employed to reconstruct the spectral reflectance and the results are compared to three related methods. In the experiment, we grouped the 1250 matt Munsell color chips and the 1600 glossy Munsell color chips to compare the performance of different methods. The results proved that the prooosed method outperformed others and showed excellent spectral and colorimetric accuracy.
作者 刘强 于雪梅
出处 《信息记录材料》 2011年第1期27-31,共5页 Information Recording Materials
基金 中央高校基本科研业务费专项资金资助
关键词 主成分分析 聚类分析 色彩表示 principal components analysis cluster analysis color representation
  • 相关文献

参考文献11

  • 1D Y Tzeng, R S Berns. A Review of Principal Compo-nent Analysis and Its Applications to Color Technology [J]. Color Res. Appl, 2005, 30,84.
  • 2J Y Hardeberg. Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches, Ph.D. Dissertation[M]. Eeole Nationale Superieure des Telecommunications, Paris , 1999. 23 - 27.
  • 3J Cohen. Dependency of the Spectral Reflectance Curves of the Munsell Color Chips[J]. Psyehonomie Sci. 1964, 1 : 369 - 370.
  • 4M Mohammadi, M Nezamabadi, R S Berns, et al. Tap- lin, Spectral Imaging Target Development Based on Hi- erarchical Cluster Analysis[P]. Proc. 12th CIC 2004. 59 - 64.
  • 5F Ayala, J F Echdvarri, P Renet. Use of Three Tristim- ulus Values from Surface Reflectance Spectra to Calculate the Principal Components for Reconstructing These Spec- tra By Using Only Three Eigenvectors[J]. J. Opt. Soc. Am. 2006, 23: 2020- 2026.
  • 6M A Lopez-alvarez, J Hernandez-Andres, E M Valero,et al. Colorimetric and Spectral Combined Metric for the Optimization of Multispectral Systems [P]. Proc AIC, 2005. 1685 - 1690.
  • 7J K Eem, H D Shin, S O Park. Reconstruction of Sur- face Spectral Reflectance Using Characteristic Vectors of Munsetl Colors[J]. Proc,2nd CIC, 1994. 127- 131.
  • 8L T Maloney. Evaluation of Linear Models of Surface Spectral Reflectance with Small Numbers of Parameters [J]. J. Opt. Soc. Am. 1986,3:1673-1679.
  • 9J Parkkinen, J Hallikainen, T Jaaskelainen. Characteris- tic Spectra of Munsell Colors[J]. J. Opt. Soc. Am. 1989,6:318 - 322.
  • 10D Connah, A Alsam, J Y Hardeberg. Multispectral Imaging.- How Many Sensors Do We Need [J]. J. IS&T..2006,50 : 45 - 53.

二级参考文献1

  • 1Moon H.Phillips P J (2001) Computational and performance aspects of PCA-based face-recognition algorithms[].Perception.

共引文献1

同被引文献9

  • 1Sahu R K, Mordechai S. Future Oncol, 2010, 6: 1653.
  • 2Kwak J T, Hewitt S M, Sinha S,et al. BMC Cancer, 2011, 11: 62.
  • 3Rehman I U, Rehman S, Movasaghi Z, et al. Applied Spectroscopy Reviews, 2010, 45: 355.
  • 4Jackson M,Mansfield J R, Dolenko B,et al. Cancer Detect Prev.,1999,23: 245.
  • 5Lewis P D,Lewis K E,Ghosal R,et al. BMC Cancer, 2010, 10: 640.
  • 6Michael J W, Matthew J G, Maneesh S H M, et al. Cancer Letters, 2007,246(1) : 1.
  • 7Bellisola G, Sorio C. Am. J. Cancer Res.,2012,2(1) : 1.
  • 8Cyril P, Gerard D. Trends in Biotechnology. 2006,24(10) : 455.
  • 9曹锴,狄建彬,魏文祥,庞智.miRNA在结肠癌早期诊断和筛选中的作用[J].世界华人消化杂志,2009,17(35):3615-3619. 被引量:33

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部