期刊文献+

改进型动态隧道神经网络在蛋白质预测的应用

Application of improved dynamic tunneling neural network in protein secondary structure prediction
下载PDF
导出
摘要 神经网络具有容易陷入局部极小的缺点,动态隧道神经网络通过"钻隧道"方式,让目标函数跳出局部最小,找到更小的可行域,从而避免神经网络陷入局部极小。传统的动态隧道技术隧道方向单一并且随意,因此具有不稳定性。为了有效提高动态隧道的搜索效率,提出了一种改进型动态隧道神经网络算法。该算法增加搜索的隧道数,引入夹角弹性系数控制隧道方向,考察隧道之间的相互影响。在对alpha、beta和coil型蛋白质的二级结构预测的实验中,改进型动态隧道神经网络算法预测的效果优于神经网络算法和传统的动态隧道神经网络算法。 Neural network suffers from a defect of easily immersing in local trap.Dynamic tunneling helps neural network eliminate the local trap by"tunneling"and jumping into a lower valley of object function.However,the traditional dynamic tunneling technique tries to search in a random and single direction thus it is instable.In order to promote the searching efficiency,an improved dynamic tunneling neural network algorithm has been proposed to enhance the instability by increasing the directions of tunneling and controlling the interaction between trajectories of the tunneling system with an angle spring coefficient.Experimental results of the prediction of alpha,beta and coil protein secondary structure show that the improved algorithm outperforms the neural network and the traditional dynamic tunneling neural network.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第3期13-16,共4页 Computer Engineering and Applications
基金 中国博士后科学基金No.20070420711 重庆市科委自然科学基金No.2007BB2372~~
关键词 蛋白质二级结构预测 神经网络 动态隧道技术 多轨道 protein secondary structure prediction neural network dynamic tunneling technique multi-trajectory
  • 相关文献

参考文献7

  • 1阮晓钢,孙海军.编码方式对蛋白质二级结构预测精度的影响[J].北京工业大学学报,2005,31(3):229-235. 被引量:12
  • 2Rost B, Sander C.Combinging evolutionary information and neural networks to predict protein secondary strueture[J].Proteins, 1994,19:55-72.
  • 3Won K J, Hamelryck T, Prugel-Bennett A, et al.Evolv!ng hidden markov models for protein secondary structure prediction[C]//Proceedings of IEEE Congress on Evolutionary Computation,Edin- burgh, 2005 : 33-40.
  • 4Yasuda K, Kanazawa T.Multi-trajectory dynamic tunneling algorithm[C]//Proceedings of IEEE International Conference on Systems,Man and Cybernetics,Oct 6-9,2002,1:472-477.
  • 5HaykinS,叶世伟,史忠植.Neuralnetworks:Acomprehensivefoun-dation[M].2版.北京:机械工业出版社,2004:663-686.
  • 6Kim H, Park H.Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor[R].Department of Computer Science and Engineering, University of Minnesota, 2003.
  • 7Chowdhury P R, Singh Y P, Chansarkar R A.Dynamic tunneling technique for efficient training of multilayer pereeptrons[J].IEEE Transactions on Neural Networks, 1999,10( 1 ).

二级参考文献5

  • 1方慧生,相秉仁,安登魁.改进Madaline学习算法预测蛋白质二级结构[J].中国药科大学学报,1996,27(6):366-369. 被引量:17
  • 2来鲁毕.蛋白质的结构预测和分子设计[M].北京:北京大学出版社,1993..
  • 3HOLLEY L H, KARPLUS M.Neural network applied in prediction of protein secondary structure[J].Biophysics,1989,86:152-156.
  • 4LAMONT Owen, LIANG Hiew Hong, BELLGARD Matthew.Data representation influences protein secondary structure prediction using artificial neural networks[A].Seventh Australian and New Zealand Intelligent Information Systems Conference[C].Perth,Western Australia:ANZIIS, 2001.18-21.
  • 5BOHR Henrik, BOHR Jakob, BRUNAK Seren, et al.Protein secondary structure and homology by neural networks[J].The Ahelices in Rhodopsin, 1988, 241(1,2):223-228.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部