期刊文献+

含参数4-进双对称小波的构造

Construction of 4-bank bi-symmetric wavelets bases with parameters
下载PDF
导出
摘要 给出了一类具有滤波器对称和图像对称的4-进双正交小波的构造,该小波可以由它的低通滤波器确定,因此,其自由度能够运用到应用背景。构造具有较高消失矩的对称双正交多小波族,研究了变换矩阵的性质,为应用提供了大量选择。 In Empirical Mode Decomposition(EMD),to suppress the ending effect,extending the data near the two end points is used by mathematics fitting usually.In practice,extending the sampling-time can also extend the end points and suppress the ending effect.Comparison has been made among the data extending method between the mathematics fitting(the mirror extending method as example) and terminal intercept near the two end points.To test the effect of EMD,the correlation coefficient between the practical results and ideal results are calculated.As a result of simulation and numerical experiment(periodic harmonic function as example),it is shown that if the signal intercept around half the length of data signals,better results can be obtained than endpoint extending.More the interception of points approximates more ending effect can be effectively restrained.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第3期129-131,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.10571049 湖南省教育厅资助项目(No.10C1008) 湖南文理学院教改资助项目~~
关键词 4-进小波 双正交小波 正交性 图像压缩 Empirical Mode Decomposition(EMD) ending effect endpoint intercept data extending
  • 相关文献

参考文献8

  • 1Cohen A,Daubechies I,Feauveau J C.Biorthogonal bases of compactly supported wavelets[J].Comm on Pure and Applied Mathematics,1992,45:485-560.
  • 2Chui C,Lian J A.Construction of compactly supported symmetric and anti symmetric orthogonal wavelets with scale=3[J].Applied Computer Harmon Anal,1995,2:68-84.
  • 3Peng L Z,Wang Y G.The parameterization and algebraic structure of 3-bank wavelets system[J].Science in China:Series A,2001,31:602-614.
  • 4Han B.Symmetric orthogonal scaling functions and wavelets with dilation factor 4[J].Adv Comput Math,1998,8:221-247.
  • 5彭立中,王永革.具有优美结构的紧支正交小波的构造[J].中国科学(E辑),2004,34(2):200-210. 被引量:15
  • 6邹庆云,王国秋.离散超小波变换下双正交小波谱分析[J].数学进展,2008,37(3):332-336. 被引量:5
  • 7邹庆云,王国秋,王真伟.由最优双正交小波变换矩阵决定的小波基[J].江西师范大学学报(自然科学版),2009,33(1):69-73. 被引量:5
  • 8Wang G Q.Four-bank compactly supported hi-symmetric orthonormal wavelets bases[J].Optical Engineering,2004,43(10):2362-2368.

二级参考文献18

  • 1Wang G Q, Matrix methods of constructing wavelet filters and discrete hyper-wavelet transforms[ J]. Optical Engineering, 2000,39:1080-1087.
  • 2Said A,Pearlman W A.A new,fast,and efficient image codec based on set partitioning in hierarchical trees[J].IEEE Transactions Circuits System Video Technology, 1996,6(3) :243-250.
  • 3Daubechies I. Orthogonal bases of compactly supported wavelets[ J ]. Comm on Pure and Applied Mathematics, 1988,41:909-996.
  • 4Cohen A,Daubechies I,Feauveau J C. Biorthogonal bases of compactly supported wavelets[J]. Comm on Pure and Applied Mathematics,1992,45:485-560.
  • 5Peng L Z,Wang Y G.The parameterization and algebraic structure of 3-bank wavelets system[J] .Science in China(Series A) ,2001,31:602-614.
  • 6Jang Q T. On the design of multifilter banks and orthononnal multivelet bases[ J]. IEEE Trans on Signal Processing, 1998,46:3292-3303.
  • 7Wang G Q. Four-bank Compactly Supported bi-symmetric orthonomal wavelets bases[J]. Optical Engineering 2004,43(10) :2362-2368.
  • 8[1]Daubechies I. Orthonormal bases of compact supported wavelets. Comm Pure and Appl Math, 1988, 41:909~996
  • 9[2]Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
  • 10[3]Steffen P, Heller P, Gopinath R A, et al. Theory of regular M-band wavelet bases. IEEE Trans on Signal Processing, 1993, 41:3497~3511

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部