期刊文献+

微粒群优化和视觉感应相结合的图像增强方法 被引量:1

Combining intelligent optimization and visual influence for image enhancement
下载PDF
导出
摘要 对粒群优化算法进行了改进,提出了一种微粒群优化和视觉感应相结合的图像增强方法,通过微粒群算法优化灰度图像的平均明暗信息熵差值,自适应地选择图像灰度转换函数,用以实现图像的增强。该方法不仅参数个数少,优化速度快,在搜索能力上优于粒群优化算法,而且能够保证算法的全局收敛性。仿真实例证明了该方法在图像增强上的有效性和优越性。 Particle Swarm Optimization(PSO) algorithm is improved,and the method about combining intelligent optimization and visual influence for image enhancement is proposed.By optimizing the difference of averag bright and dark information entropy of a gray image,the gray transformation function of an image is adaptively chosen.Lower parameters of this method are needed,higher optimizing speed of the method is possessed,searching ability of the method is superiority,and global convergence of the mothed is guaranteeed.The efficiency and superiority of this mothed can be confirmed by the simulation results.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第3期199-201,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.ZS031-A25-019-G 甘肃省高校研究生导师科研计划资助No.0704-01~~
关键词 信息熵 图像增强 粒群优化 information entropy image enhancement Particle Swarm Optimization(PSO)
  • 相关文献

参考文献6

二级参考文献29

  • 1高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104. 被引量:51
  • 2Pal N R,Pal S K.A review on image segmentation techniques[J].Pattern Recognition,1993 ;26(9):1277~1294
  • 3Nobuyuki Otsu.A threshold selection method from gray-level histograms[J].IEEE Trans on Systems,Man,and Cybernetics,1979;9 (1):62~66
  • 4Pun T.A new method for gray-level picture thresholding using the entropy of the histogray[J].Signal Process,1980; 2 (3):223~237
  • 5Kapur J N,Sahoo P K,Wong A K C.A new method of gray level picture thresholding using the entropy of the histogram[J].Computer Vision,Graphics,and Image Processing,1985 ;29(2):273~285
  • 6Yen J C,Chang F J,Chang S.A new criterion for automatic multilevel thresholding[J].IEEE Trans On Image Processing,1995; 4 (3):370~377
  • 7Sahoo P K,Wong A K C.A survey of thresholding techniques[J].Computer Vision,Graphics,and Image Processing,1988 ;41:233~260
  • 8Kennedy J,Eberhart R C.Particle swarmoptimization[C].In:Proceedings of the 1995 IEEE International Conference on Neural Networks,Piscataway,NJ,Perth,IEEE service center,1995:1942~1948
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer[C].In:Pro/s ceedings of the IEEE International Conference on Evolutionary Computation,Piscataway,NJ,Anchorage,AK USA:IEEE service center,1998:69~73
  • 10Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002 ;6 (1):58~73

共引文献55

同被引文献12

  • 1汪志云,黄梦为,胡钋,饶强.基于直方图的图像增强及其MATLAB实现[J].计算机工程与科学,2006,28(2):54-56. 被引量:60
  • 2周鲜成,申群太,王俊年.一种新的图像对比度自适应变换算法[J].科学技术与工程,2007,7(21):5575-5579. 被引量:4
  • 3H Demirel,C Ozcinar,G Anbarjafari. Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition[J].Geoscience and Remote Sensing Letters IEEE,2010,(2):333-337.
  • 4S Agaian,B Silver,K Panetta. Transform coefficient histogrambased image enhancement algorithms using contrast entropy[J].{H}IEEE Transactions on Image Processing,2007,(3):741-758.
  • 5S Hashemi,S Kuani,N Noroozi. An image contrast enhancement method based on genetic algorithm[J].International Conference on Digital Image Processing,2009.167-171.
  • 6J D Tubbs. A note on parametric image enhancement[J].{H}Pattern Recognition,1987,(6):617-621.
  • 7P Hoseini,M G Shayesteh. Hybrid ant colony optimization,genetic algorithm,and simulated annealing for image contrast enhancement[A].2010.1-6.
  • 8J Kennedy,R Eberhart. Particle swarm optimization[A].1995.1942-1948.
  • 9张文爱,刘丽芳,李孝荣.基于粒子进化的多粒子群优化算法[J].计算机工程与应用,2008,44(7):51-53. 被引量:22
  • 10康志亮,许丽佳.基于小波的红外图像去噪算法研究[J].计算机仿真,2011,28(1):265-267. 被引量:10

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部