期刊文献+

基于分割模式的时间序列矢量符号化算法 被引量:6

Vector Symbolization Algorithm for Time Series Based on Segmentation Mode
下载PDF
导出
摘要 针对符号化聚合近似算法(SAX)中时间序列必须等长分割的缺陷,提出一种基于分割模式的时间序列符号化算法(SMSAX)。利用三角阈值法对随机抽样的时间序列进行特征提取,计算时间序列最大压缩比,将其作为时间窗宽提取分割点,进而求出时间序列的分割模式。利用得到的分割模式对时间序列进行分割降维,通过均值和波动率对分割后的子序列进行向量符号化。根据时间序列特征对其进行不等长分割,并加入波动率消除奇异点的影响。实验结果表明,SMSAX能获得比SAX更精确的结果。 Aiming at defects of equal-length segmentation of time series in symbolic aggregate approximation algorithm(SAX), a vector symbolic algorithm based on segmentation algorithm for time series(SMSAX) is presented. A triangular threshold method is used to extract features of time series which is sampled randomly. The time series maximum compression ratio is calculated as the time window width to extract segmentation points, and further the Segment Mode(SM) of the time series is found. The partition model is used to segment time series to reduce the dimensionality of them by using vector of mean and volatility of sub-sequences to symbolic them. The algorithm segments time sequences based on characters of them, and eliminates the impact of singular points with the fluctuation rate. Experimental results indicate that SMSAX is able to obtain more accurate results than SAX.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第4期55-57,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60634020)
关键词 分割模式 时间序列 降维 子序列符号化 Segment Mode(SM) time series dimension reducing sub-sequence symbolization
  • 相关文献

参考文献5

  • 1Lin J, Keogh E, Lonardi S, et al. Symbolic Representation of Time Series, with Implications for Streaming Algorithms[C]//Proc. of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. San Diego, California, USA: ACM Press. 2003.
  • 2钟清流,蔡自兴.基于统计特征的时序数据符号化算法[J].计算机学报,2008,31(10):1857-1864. 被引量:30
  • 3国宏伟,高学东,王宏.基于异时间窗划分的时间序列聚类[J].计算机工程,2007,33(21):3-5. 被引量:6
  • 4Keogh E, Kasetty S. On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration[C]//Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada: ACM Press, 2002.
  • 5Loh W K, Kim S W. Index Interpolation: An Approach for Subsequence Matching Supporting Normalization Transform in Time-series Databases[C]//Proc. of the 9th International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2000: 480-487.

二级参考文献25

  • 1肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59
  • 2张军,陈汉武,马志民.一种时间序列相似性的快速搜索算法[J].南京师范大学学报(工程技术版),2005,5(3):50-53. 被引量:7
  • 3Fayyad U M,Piatetsky-shapiro G,Smyth P,et al.Advances in Knowledge Discovery and Data Mining[M].Cambridge,MA:AAAI/MIT Press,1996.
  • 4武森,高学东,巴斯蒂安M.数据仓库与数据挖掘[M].北京:冶金工业出版社,2002.
  • 5Moller-levet C S,Klawonn F,Cho K H,et al.Fuzzy Clustering of Short Time Series and Unevenly Distributed Sampling Points[C]// Proceedings of the 5th International Symposium on Intelligent Data Analysis,Berlin,Germany.2003:28-30.
  • 6Liao T W,Bolt B,Forester J,et al.Understanding and Projecting the Battle State[C]//Proc.of the 23rd Army Science Conference.2002.
  • 7Shumway R H.Time-frequency Clustering and Discriminant Analysis[J].Stat.Probab.Lett.,2003,63(3):307-314.
  • 8Daw C S, Finney C E A, Tracy E R. A review of symbolic analysis of experimental data. Review of Scientific Instruments, 2003, 74(2): 915-930
  • 9Kantz H, Schreiber T. Nonlinear Time Series Analysis. 2nd Edition. Cambridge, UK: Cambridge University Press, 2004
  • 10Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subsequence matching in time-series databases//Proceedings of the ACM SIGMOD International Conference on Management of Data. Minneapolis, MN, 1994: 419-429

共引文献34

同被引文献53

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部