期刊文献+

移动机器人行为参数的PSO多目标优化 被引量:4

PSO Multi-objective Optimization for Mobile Robot Behavior Parameter
下载PDF
导出
摘要 根据移动机器人的导航任务,提出基于粒子群优化(PSO)算法的行为参数多目标分层优化方法。将导航方向与导航速度相关的参数按优先级进行PSO算法分层选取,使机器人在路径近似最优的基础上实现导航时间最少。仿真结果表明,该方法可以提高导航效率,实现导航决策的逐步求精,从而改善机器人在未知环境下的自主导航性能。 This paper presents a multi-objective hierarchical optimization method based on Particle Swarm Optimization(PSO) algorithm for behavior parameters by analyzing the navigation task of mobile robots. To minimize the navigation time of mobile robot based on near optimal path, the behavior parameters of navigation direction and velocity are optimized by PSO-based optimization. Simulation results show that the method can improve the efficiency of optimization. It can realize the stepwise accurate decision-making, and improve the performance of robot's autonomous navigation under unknown environment.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第4期190-192,共3页 Computer Engineering
基金 宁波市自然科学基金资助项目(2009A610102) 浙大宁波理工学院科研启动基金资助项目(1140657G801)
关键词 自主移动机器人 行为动力学模型 多目标分层优化 粒子群优化 autonomous mobile robot behavior dynamics model multi-objective hierarchical optimization Particle Swarm Optimization(PSO)
  • 相关文献

参考文献7

二级参考文献19

  • 1杨廷俊.矩阵特征值与特征向量的同步求解法[J].甘肃联合大学学报(自然科学版),2006,20(3):20-22. 被引量:4
  • 2李朝荣,张鹰,张安妮.基于PSO算法的神经网络集成入侵检测系统[J].计算机工程,2007,33(14):123-124. 被引量:7
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization[Z]. (2009-01-02). http://www.particleswarm.in fo.
  • 4Mathews J H, Fink K D. Numerical Methods Using Matlab[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2005.
  • 5Li Chun. A decentralized approach to the conflict-free motion planning fo multiple mobile robots[A]. Proc. 1999 IEEE Int. Conf. on Robotics and Automation[ C ].Detroit: Michigan, 1999.
  • 6Pagello Enrico, D'Angelo Antonio. Cooper-ative behaviors in muhi-robot systems through implicit communica-tion[J]. Robotics and Autonomous sys-tems,1999,26( 1 ) : 65 -77.
  • 7Marios M Polycarpou, Yanli Yang, Kevin M. Passino. Cooperative control of distributed multi-agent system-s[J]. IEEE Control Systems Magazine,June 2001.
  • 8康立山 谢云 尤矢勇.模拟退火算法[M].北京:科学出版社,1994.150-151.
  • 9郭大庆,李晓,赵永进.基于改进PSO算法的PID参数自整定[J].计算机工程,2007,33(18):202-204. 被引量:20
  • 10Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory[C]//Proc. of the 6th Int'l Symposium off Micro Machine and Human Science. Nagoya, Japan: [s. n.], 1995.

共引文献40

同被引文献54

  • 1费燕琼,赵锡芳.基于凸多面体边界元的接触状态判断[J].机械工程学报,2005,41(1):50-53. 被引量:3
  • 2刘文瑛,胡文锋.机器人插入装配的一种主动柔顺策略研究——模式识别法[J].高技术通讯,1994,4(1):16-20. 被引量:2
  • 3高胜,赵杰,蔡鹤皋.机器人装配接触状态识别与规划的模糊Petri网模型[J].机械工程学报,2006,42(2):43-50. 被引量:2
  • 4SchiJ ner G, Dose M, Engels C. Dynamics of behavior: theory and applications for autonomous robot architectures [ J ]. Robot- ics and Autonomous Systems,1995,16:213 ~ 245.
  • 5Boronstein J, Yoram K. The vector field histogram-fast obstacle avoidance for mobile robots [ J ]. IEEE Transactions on Robtics and Automation, 1991,7 (3) :278 ~ 288.
  • 6Bicho E, Mallet P, SchiJ ner G. Target representation on an au- tonomous vehicle with low-level sensors [ J ]. The International Journal of Robotics Resestrch, 2000,19 (5) :424 ~ 447.
  • 7Althaus P, Christenson H I. Behavior coordination in structured en- vironments[ J]. Advanced Robotics, 2003,17(7):657-674.
  • 8Reimann H, Iossidis I, SchlJ her G. Integrating orientation con- straints into the attractor dynamics approach for autonomous ma- nipulation[ A ]. The 2010 IEEE-RAS International Confer- ence on Humanoid Robots [ C ], 2010,12:294 ~ 301.
  • 9Monteiro S, Bicho E. Attractor dynamics approach to formation control: theory and application[J]. Auton Robot, 2010,29.
  • 10Large E W, Christensen H I. Scaling the dynamic approach to path planning and control: competition among behavioral con- straints [ J ]. International Journal of Robotics Research, 1999,18( 1 ) :37 -58.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部