期刊文献+

基于光诱导介电泳的微粒自动化操作实验研究 被引量:3

Automatic Manipulation of Polystyrene Beads via Optically-Induced Dielectrophoresis
下载PDF
导出
摘要 采用等离子体增强化学气相沉积方法(PECVD)制备了氢化非晶硅(a-Si∶H)光电导薄膜,并利用双面胶技术封装ODEP芯片。构建了包括光投影模块和视频监控模块的ODEP自动化操作实验平台。以聚苯乙烯微粒为操作对象,进行微米尺度粒子的ODEP自动化操作实验,并深入研究了交流电压、投射光颜色和光电极形状对微粒运动速度的影响。实验结果表明,在交流电压频率和投射光颜色相同的条件下,粒子的运动速度与交流电压的幅值成线性关系,施加的交流电压幅值越大,微粒的运动速度越大。在交流电压的幅值和频率相同的条件下,投射光为白色时,粒子的运动速度最大;投射光为蓝色时,粒子的运动速度最小。当投射光为白光,电压为20V,频率为20kHz时,10μm和20μm聚苯乙烯微粒的最大运动速度分别为143μm/s和158μm/s。 The hydrogenated amorphous silicon(a-Si∶H),used as a photoconductive layer,was deposited on the indium-tin-oxide(ITO)glass by plasma enhanced chemical vapor deposition(PECVD).Then the optically-induced dielectrophoresis(ODEP)chip was integrated utilizing double-adhesive.A ODEP automatic experimental setup with a light projection and a visual monitoring modules for the microparticle manipulation was established.The experiments of automatically manipulating micro-scale polystyrene beads were carried out.Furthermore,the effects of the AC voltage,projection light color and geometry shape of the photoelectrode on the bead velocity were investigated deeply.The results show that the bead velocity is proportional to the magnitude of the AC voltage while the frequency is constant and the projection light is in the same color.The bead velocity will increase with the increment of the voltage.The white projection light causes the highest bead velocity,and the blue projection light causes the lowest velocity when the magnitude and frequency of the AC voltage are set to be constant.While the projection light is white and the voltage is 20 V at 20 kHz,the highest velocities of 10 μm and 20 μm polystyrene beads are 143 μm/s and 158 μm/s,respectively.
出处 《微纳电子技术》 CAS 北大核心 2011年第2期132-137,共6页 Micronanoelectronic Technology
基金 机器人学国家重点实验室自主课题(2009Z02)
关键词 光诱导介电泳 氢化非晶硅 光电导薄膜 自动化操作 ODEP芯片 虚拟电极 optically-induced dielectrophoresis(ODEP) hydrogenated amorphous silicon photoconductive thin film automatic manipulation ODEP chip virtual electrode
  • 相关文献

参考文献9

  • 1GRIER D G.A revolution in optical manipulation[J].Nature,2003,424(6950):810-816.
  • 2LEE H,PURDON A M,WESTERVELT R M.Manipulation of biological cells using a microelectromagnet matrix[J].Applied Physics Letters,2004,85(6):1063-1065.
  • 3JONES T B.Electromechanics of particles[M].New York:Cambridge University Press,1995.
  • 4CHIOU P Y,OHTA A T,WU M C.Massively parallel manipulation of single cells and microparticles using optical images[J].Nature,2005,436(7049):370-372.
  • 5HWANG H,CHOI Y J,CHOI W.Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system[J].Electrophoresis,2008,29(6):1203-1212.
  • 6CHIOU P Y,OHTA A T,WU M C.Microvison-activated automatic optical manipulator for microscopic particles[C]//Proceedings of the 18th IEEE International Conference MEMS.Miami,USA,2005:682-685.
  • 7JAMSHIDI A,PAUZAUSKIE P J,SCHUCK P J.Dynamic manipulation and separation of individual semiconducting and metallic nanowires[J].Nature Photonics,2008,2(2):86-89.
  • 8LIN Y H,CHANG C M,LEE G B.Manipulation of single DNA molecules by using optically projected images[J].Optics Express,2009,17(17):15318-15329.
  • 9LEE M W,LIN Y H,LEE G B.Manipulation and patterning of carban nanotubes utilizing optically induce dielectrophoretic forces[J].Microfluidics and Nanofluidics,2010,8(5):609-617.

同被引文献60

  • 1许宝建,金庆辉,赵建龙.基于MEMS微针技术的研究现状与展望[J].微纳电子技术,2005,42(4):150-156. 被引量:12
  • 2倪中华,朱树存.基于介电泳的生物粒子分离芯片[J].东南大学学报(自然科学版),2005,35(5):724-728. 被引量:6
  • 3白春礼.纳米科技发展趋势分析(一)[J].纳米科技,2005,2(5):3-7. 被引量:7
  • 4Smith D E,Tans S J,Smith S B,et al..The bacteriophage straight phi 29 portal motor can package DNA against a large internal force[J].Nature,2001,413(6857):748-752.
  • 5Li H B,Oberhauser A F,Redick S D,et al..Multiple conformations of PEVK proteins detected by single- molecule techniques[J].Proceedings of the National Academy of Sciences,2001,98(19):10682-10686.
  • 6Cervantes N A G,Medina B G.Robust deposition of lambda DNA on mica for imaging by AFM in air[J].Scanning,2014,36(6):561-569.
  • 7Hertz H M.Standing- wave acoustic trap for nonintrusive positioning of microparticles[J].Journal of Applied Physics,1995,78(8):4845-4849.
  • 8Kozuka T,Yasui K,Tuziuti T,et al..Acoustic standing- wave field for manipulation in air[J].Japanese Journal of Applied Physics,2008,47(5):4336-4338.
  • 9Ashkin A,Dziedzic J M,Yamane T.Optical trapping and manipulation of single cells using infrared- laser beams[J].Nature,1987,330(6150):769-771.
  • 10Curtis J E,Koss B A,Grier D G.Dynamic holographic optical tweezers[J].Optics Communications,2002,207(1-6):169-175.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部