期刊文献+

基于社会网络信息流模型的协同过滤算法 被引量:6

Social network information flow model based collaborative filtering algorithm
下载PDF
导出
摘要 为提高个性化推荐技术的准确率,首先在多维半马氏过程的状态空间中定义'空状态',得到扩展多维半马氏过程,将其与社会网络分析理论结合,得到社会网络信息流模型,该模型描述了社会网络成员间的信息流动过程。然后基于社会网络信息流模型,提出协同过滤算法SMRR(Semi-Markov and reward renewal)。实验表明,由于综合考虑用户自身偏好和社会网络中其他成员的影响,SMRR的预测准确率明显高于原有算法。 In order to improve the accuracy of personalized recommendation, "idle state" was firstly introduced into multi-dimension Semi-Markov process, therefore extended multi-dimension Semi- Markov process was obtained. Then by combing the extended multi-dimension Semi-Markov process with social network analysis theory, social network information flow model was established. This model describes the information flow process among social actors. Based on the social network information flow model, a collaborative filtering algorithm, Semi-Markov and Reward Renewal (SMRR), was proposed. Experiments demonstrate that, regarding accuracy, SMRR performs better than existed algorithms. Considering personalized behavior patterns of actors and the influence of interacting social actors together can improve the accuracy of personalized recommendation.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第1期270-275,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家杰出青年科学基金项目(60525110) '973'国家重点基础研究发展规划项目(2007CB307100 2007CB307103) 新世纪优秀人才支持计划项目(NCET-04-0111) 电子信息产业发展基金项目
关键词 通信技术 协同过滤 多维半马氏过程 有偿半马氏模型 社会网络 电子商务 communication collaborative filtering multi-dimension Semi-Markov process reward semi-Markov model social network E-commerce
  • 相关文献

参考文献13

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2Song Xiao-dan, Chi Yun, Hino Koji, et al. Information flow modeling based on diffusion rate for prediction and ranking[C] // Proceedings of the Sixteenth International World Wide Web Conference, Banff, Alberta, Canada, 2007 :191-200.
  • 3Rogers E M. Diffusion of Innovations[M]. New York : The Free Press, 1995.
  • 4Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network[C]//Proc of 9th ACM SIGKDD,Washington, DC, USA, 2003:301-311.
  • 5Sarwar B, Karypis G, Konstan J, et al. Item-based collaboratove filtering recommendation algorithms [C] // Proceedings of the Tenth International World Wide Web Conference, Hong Kong, China, 2001: 285-295.
  • 6Bass F. A new product growth for model consumer durables[J]. Management Science, 1969, 15 (5) :215-227.
  • 7Richardson M, Domingos P. Mining knowledgesharing sites for viral marketing[C] // Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002 : 108-118.
  • 8Oliveira J G, Barabdsi A L. Human dynamics: Darwin and Einstein correspondence patterns [J]. Nature, 2005, 437a45-47.
  • 9Wan Li, Liao Jiamxin, Zhu Xiao-min. CDPM: finding and evaluating community structure in social networks[C] //The 4th International Conference on Advanced Data Mining and Applications, Chengdu, China, 2008:195-203.
  • 10Ching Wai Ki, Ng Micheal K. Markov Chains: Models, Algorithms and Applications [M]. New York:Springer, 2006.

二级参考文献10

  • 1J Schafer,J Konstan,J Riedl.Recommender systems in e-commerce[C].In:Proc of ACM E-Commerce.New York:ACM Press,1999.158-166
  • 2Champa Jayawardana,K Priyantha Hewagamage Masashito HIrakawa.A personalize information environment for digital libraries[J].Information Technology and Libraries,2001,20(4):185-196
  • 3J Konstan,B Miller,D Maltz,et al.GroupLens:Applying collaborative filtering to Usenet news[J].Communications of the ACM,1997,40(3):77-87
  • 4高凤荣.个性化推荐系统关键技术研究:[博士论文][D].北京:中国人民大学,2003
  • 5Greg Linden,Brent Smith,Jeremy York.Amazon.com recommendations:Item-to-Item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80
  • 6G Adomavicius,A Tuzhilin.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749
  • 7Chun Zeng,Chun-Xiao Xing,Li-Zhu Zhou,et al.Similarity measure and instance selection for collaborative filtering international[J].Journal of Electronic Commerce,2004,4(8):115-129
  • 8G Karypis.Evaluation of item-based top-N recommendation algorithms[C].In:Proc of CIKM 2001.New York:ACM Press,2001.247-254
  • 9Brendan Kitts,David Freed,Martin Vrieze.Cross-sell:A fast promotion-tunable customer-item recommendation method based on conditional independent probabilities[C].In:Proc of ACM SIGKDD Int'l Conf.New York:ACM Press,2000.437-446
  • 10KDD2000 Dataset[OL].http://www.ecn.purdue.edu/KDDCUP/data/,2005

共引文献147

同被引文献74

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部