期刊文献+

一种基于AFSA的SVM分类方法(英文)

A classification method of SVM based on AFSA
下载PDF
导出
摘要 应用一种全局搜索方法即人工鱼群算法(artificial fish swarm algorithm,AFSA)来优化支持向量基(support vector machines,SVM)的参数,并应用于图像分类。基于分类,初始化惩罚系数C和核函数参数δ2的范围;利用AF-SA来优化SVM的参数,并得到合适的值;最后,把参数优化后的SVM应用于分类。实验结果表明,与C-SVC和交叉验证法相比,其分类结果优于其它两种方法,因此AFSA-SVM方法有更好的准确性和鲁棒性。 In this paper, artificial fish swarm algorithm (AFSA } that is a global search method to optimize the parameters of support vector machines ( SVM ) is applied and modified for image classification. In the classification, firstly, the range of parameters of punishment C and kernel function 62 are initialized ; secondly, AFSA is applied to optimize the parameters to gaiu suitable values; finally, SVM is used for classification, in which the parameters are optimized. By comparing with C-SVC and cross-validate methods, the result excelled another two methods, so the studied algorithm of AFSA-SVM is more accuracy and robust.
作者 王卫星 刘娟
出处 《重庆邮电大学学报(自然科学版)》 北大核心 2011年第1期91-95,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 The National Natural Sciences Foundation of China(60873186)
关键词 人工鱼群算法(AFSA) 支持向量基(SVM) C—SVC 交叉验证法 artificial fish swarm algorithm (AFSA) support vector machines (SVM) C-SVC cross-validate
  • 相关文献

参考文献11

二级参考文献39

  • 1罗方芳,陈国龙,郭文忠.基于改进的Fish-search算法的信息检索研究[J].福州大学学报(自然科学版),2006,34(2):184-188. 被引量:9
  • 2雷开友,邱玉辉,贺一.一种优化高维复杂函数的PSO算法[J].计算机科学,2006,33(8):202-205. 被引量:18
  • 3张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 4胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):193-195. 被引量:62
  • 5戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 6Ludovic M. Genetic algorithm, a biologically inspired approach for security audit trails analysis. Proceedings of 12th International Conference on Computer Safety, Reliability and Security (SAFECOMP'93), Oct 27-29, 1993, Poznan, Poland. Berlin, Germany: Springer-Verlag, 1993
  • 7Ryan J, Lin M J. Intrusion detection with neural networks. Advances in Neural Information Processing Systems 10,Cambridge, MA, USA: MIT Press, 1998
  • 8Batur C, Zhou L, Chan C C. Support vector machines for fault detection. Proceedings of the 41st IEEE Conference on Detection and Control: Vol 2, Dec 10--13, Las Vegas, NV, USA, Piscataway, NJ, USA: IEEE, 2002:1355-1356
  • 9Tian Xin-guang, Gao Li-zhi, Sun Chun-lai, et al. A method for anomaly detection of user behaviors based on machine learning. The Journal of China Universities of Posts and Telecommunications, 2006,13(2): 61--65
  • 10Liu Yi-hung, Chen Yen-ting. Face recognition using total margin-based adaptive fuzzy support vector machines. IEEE Transactions on Neural Networks, 2007,18(1): 178-192

共引文献968

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部