摘要
通过对一列由最小作用原理得到的零边值问题的解取极限,得到了二阶哈密尔顿系统櫣(t)-V(t,u(t))=f(t)同宿轨的存在性结论.
The existence of homoclinic solution is obtained for second-order Hamiltonian systems ü(t)-V(t,u(t))=f(t),as the limit of a sequence of solutions for nil-boundary-value problems which are obtained via the least action principle.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第1期52-57,共6页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10771173)
关键词
临界点
强制位势
二阶HAMILTON系统
同宿轨
critical point
coercive potential
second-order Hamiltonian system
homoclinic orbits