期刊文献+

支持向量机研究进展 被引量:123

Advances of Support Vector Machines(SVM)
下载PDF
导出
摘要 基于统计学习理论的支持向量机(Support vector machines,SVM)以其优秀的学习能力受到广泛的关注。但传统支持向量机在处理大规模二次规划问题时会出现训练时间长、效率低下等问题。对SVM训练算法的最新研究成果进行了综述,对主要算法进行了比较深入的分析和比较,指出了各自的优点及其存在的问题,并且着重介绍了目前研究的新进展———模糊SVM和粒度SVM。接着论述了SVM主要的两方面应用———分类和回归。最后给出了今后SVM研究方向的预见。 upport vector machines(SVM) are widespread attended for its excellent ability to learn,that are based on statistical learning theory.But in dealing with large-scale quadratic programming(QP) problem,traditional SVM will take too long time of training time,and has low efficiency and so on.This paper made a summarize of the new progress in the SVM training of algorithm,and made analysis and comparison on main algorithm,pointed out the advantages and disadvantages of them,focused on new progress in the current study———Fuzzy Support Vector Machine and Granular Support Vector Machine.Then the two mainly applications———classification and regression of SVM were discussed.Fi-nally,the article gave the future research directions on SVM prediction.
出处 《计算机科学》 CSCD 北大核心 2011年第2期14-17,共4页 Computer Science
基金 江苏省自然科学基金项目(BK2009093) 国家自然科学基金项目(60975039)资助
关键词 支持向量机 训练算法 模糊支持向量机 粒度支持向量机 Support vector machine Training algorithm Fuzzy SVM Granular SVM
  • 相关文献

参考文献41

  • 1Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2009.
  • 2Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 3CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 4张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 5Boser B,Guyon I,Vapnik V.A training algorithm for optimal margin classifiers[C] ∥Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory.New York:ACM Press,1992:144-152.
  • 6Osuna E,Frenud R,Girosi F.An improved training algorithm for support vector machines[C] ∥Proceedings of IEEE Workshop on Neural Networks for Signal Processing.New York,USA,1997:276-285.
  • 7Joachims T.Making large-scale support vector machine learning practical[M] ∥A.J.Smola,B.Scholkopf,C.Burges,eds.Advances in Kernel Methods:Support Vector Machines,Cambridge,MA:MIT Press,C1998.
  • 8Platt J.Fast training of support vector machines using sequential minimal optimization[M] ∥A.J.Smola,B.Scholkopf,C.Burges,eds.Advances in Kernel Methods:Support Vector Machines,Cambridge,MA:MIT Press,1998.
  • 9Dai Liuling,Huang Heyan,Chen Zhaoxiong.Ternary sequential analytic optimization algorithm for SVM classifier design[J].Asian Journal of Information Technology,2005,4(3):2-8.
  • 10Keerthi S S,Shevade S,Bhattaeharyya C,et al.Improvements to Platt's SMO algorithm for SVM classifier design[R].Dept.of CSA,Banglore,India,1999.

二级参考文献49

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2高平安,蒙祖强,蔡自兴.基于粒度计算的数据分类建模研究[J].计算机应用研究,2007,24(3):37-40. 被引量:2
  • 3PROVOST F J , KOLLURI V. A survey of methods for scaling up inductive learning algorithms[R]. Technical Report ISL-97-3, Intelligent Systems Lab, Department of Computer Science, University of Pittsburgh, 1997.
  • 4VAPNIK V. Statistical learning theory[M]. New York: Springer Verlag, 1995.
  • 5SYED N, LIU H, SUNG K. Incremental learning with support vector machines[A]. IJCAI[C]. Stockholm, Sweden, 1999.
  • 6DOMENICONI C, GUNOPULOS D. Incremental support vector machine construction[A]. ICDM[C]. California, USA, 2001.
  • 7CHRISTOPHER J C B. A tutorial on support vector machines for pattern recognition[J]. Knowledge Discovery Data Mining, 1998, 2(2):235-244.
  • 8MARTINEZ M T, FOULETIER P. Virtual enterprise-organization, evolution and control[J]. Int J Production Economics, 2001, 74:225-238.
  • 9Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 10Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 955-974.

共引文献2453

同被引文献1311

引证文献123

二级引证文献512

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部