期刊文献+

基于时间约束网络的智能活动规划 被引量:6

Activity Planning Based on Temporal Constraint Network
下载PDF
导出
摘要 老年人认知能力的下降导致其无法正常规划日常生活的问题已经越来越受到社会的关注。利用信息技术辅助老年人独立完成日常活动,已成为目前一个新的研究领域,其中对其活动的规划和提醒是该领域的一个研究热点。在传统基于时间的活动约束表示和冲突检测的基础上,提出一种更为宽松合理的时间约束,其使活动时间更为灵活,同时引入活动规划中新的活动时间冲突问题。通过时间约束网络的相关概念和理论,将活动规划中冲突检测问题转化为简单时间约束网络是否满足一致性的问题。给出时间约束一致性的一般性检测算法,分析得出活动数较大时其算法复杂度呈指数增长。针对一般性检测算法,提出新的检测时间约束一致性的算法,以降低算法复杂度,解决活动规划中的时间冲突问题。最后通过实验对两种算法的时间复杂度进行了比较。 Elders often have difficulties in daily activities because of declining cognitive ability.Assisting elders with information technology has become a new and challenging research area.It's a problem that how to pre-defining activities into a plan and prompting the elders if they fail to execute it in this area.We gave a more flexible way to present the time constraints of activities based on the traditional way,but as the same time how to resolve the conflicts between activities become a new troublesome problem.The concept and theory of "Simple Temporal Constraint Network"(STCN) was then proposed,which will well handle the problem.We presented the time constraints of activities with STCN and checked the STCN's consistency.The "General Checking Algorithm"(GCA) was adopt,but we found that the GCA's complexity will increase by exponentially if the number of activities increases.Then,we gave an improved algorithm to resolve the conflicts between activities and compared the two algorithms.The experiment result shows the ICA has better performance than GCA.
出处 《计算机科学》 CSCD 北大核心 2011年第2期179-183,共5页 Computer Science
基金 国家自然科学基金(60903125 60803044) 国家863高技术研究发展计划基金项目(2009AA011903) 教育部"新世纪优秀人才支持计划" 教育部博士点基金新教师课题(20070699014)资助。
关键词 活动规划 时间约束 简单时间约束网络 一致性 Activity planning Temporal constraint Simple temporal constraint network Consistency
  • 相关文献

参考文献10

  • 1http://www.cogknow.eu/overview.
  • 2Cesta A,Cortellessa G,Pecora F,et al.Supporting Interaction in the ROBOCARE Intelligent Assistive Environment[C] ∥AAAI 2007 Spring Symposium.Interaction Challenges for Intelligent Assistants,Stanford University,CA,USA,March 2007.
  • 3Pecora F,Cesta A.DCOP for Smart Homes:a Case Study[J].Computational Intelligence,2007,23(4):395-419.
  • 4Mccarthy C E.A plan-based personalized cognitive orthotic[C] ∥Proceedings of the 6th International Conference on AI Planning and Scheduling.
  • 5Pollack M E,Brown L E,Colbry D,et al.Autominder:an intelligent cognitive orthotic system for people with memory impairment[J].Robotics and Autonomous Systems,2003,44(3/4):273-282.
  • 6Rudary M,Singh S,Pollack M E.Adaptive Cognitive Orthotics:Combining Reinforcement Learning and Constraint-based Temporal Reasoning[C] ∥International Workshop Then Confe-rence.2004:719-726.
  • 7Oddi A,Cesta A.Incremental forward checking for the disjunctive temporal problem[C] ∥14th European Conference on Artificial Intelligence.IOS Press:108-112.
  • 8Stergiou K,Koubarakis M.Backtracking algorithms for disjunctions of temporal constraints[J].Artificial Intelligence,120:81-117.
  • 9Dechter R,Meiri I,Pearl J.Temporal constraint net work[J].Artificial Intelligence,1991,49(1-3):61-95.
  • 10徐瑞,徐晓飞,崔平远.基于时间约束网络的动态规划调度算法[J].计算机集成制造系统-CIMS,2004,10(2):188-194. 被引量:11

二级参考文献12

  • 1段凡丁.关于最短路径的SPFA快速算法[J].西南交通大学学报,1994,29(2):207-212. 被引量:57
  • 2ALLEN J F.Maintaining knowledge about temporal intervals[J].Communications of the ACM,1983,26(11):832-843.
  • 3ALLEN J.Planning as temporal reasoning[A].KR'91:Principles of Knowledge Representation and Reasoning[C].Cambridge,MA,USA:Morgan Kaufmann Publishers,1991.3-14.
  • 4BADALONI S,BERATI M.Hybrid temporal reasoning for planning and scheduling[A].Proceedings of 3rd Workshop on Temporal Representation and Reasoning (TIME'96)[C].Los Alamitos,CA:IEEE,1996.39-44.
  • 5VRBSKY S V,TOMIC S.Satisfying temporal consistency constraints of real-time databases[J].The Journal of Systems and Software,1999,45(1):45-60.
  • 6MUSCETTOLA N,NAYAK P P,PELL B,WILLIAMS B.Remote agent:to boldly go where no AI system has gone before[J].Artificial Intelligence,1998,103(1-2):5-47.
  • 7DECHTER R,MEIRI I,PEARL J.Temporal constraint network[J].Artificial Intelligence,1991,49(1-3):61-95.
  • 8SCHWALB E,VILA L.Temporal constraints:a survey[J].Constraints:An International Journal,1998,3(2-3):129-149.
  • 9SCHWALB E,DECHTER R.Processing disjunctions in temporal constraint networks[J].Artificial Intelligence,1997,93(1-2):29-61.
  • 10ZWICK U.All pairs shortest paths in weighted directed graphs - exact and almost exact algorithms[A].Proceedings of the 39th IEEE Annual Symposium on Foundations of Computer Science (FOCS'98)[C].Los Alamitos,CA:IEEE,1998.310-319.

共引文献10

同被引文献42

  • 1龙涛,陈岩,沈林成.基于合同机制的多UCAV分布式协同任务控制[J].航空学报,2007,28(2):352-357. 被引量:24
  • 2龙涛,沈林成,朱华勇,牛轶峰.面向协同任务的多UCAV分布式任务分配与协调技术[J].自动化学报,2007,33(7):731-737. 被引量:33
  • 3《运筹学》教材编写组.运筹学[M].北京:清华大学出版社,2000..
  • 4徐洸.空军作战运筹[M].北京:空军指挥学院出版社,2002.
  • 5ALLEN J.Maintaining knowledge about temporal intervals[J].Communications of the ACM198326(11):832-843.
  • 6ALLEN J.Towards a general theory of action and time[J].Artificial Intelligence198423(2):123-154.
  • 7D F CHTER RMEIRI IPEARL J.Temporal constraint networks[J].Artificial Intelligence199149:61-95.
  • 8GEREVINI ASCHUBERT L.Efficient algorithms for qualitative reasoning about time[J].Artificial Intelligence 199574:207-248.
  • 9王树禾. 图论[M].北京:科学出版社,2011:177-191.
  • 10MUSCETTOLA NNAYAK P PPELL Bet al.Remote agent:To boldly go where no AI system has gone before[J].Artificial Intelligence1998103(1/2):5-47.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部