期刊文献+

基于小波变换和径向基神经网络的签名识别 被引量:1

The Signature-image Recognition Based on Wavelet Transform and RBF Neural Network
下载PDF
导出
摘要 主要研究利用小波变换和径向基神经网络进行签名图像的分类识别。它包括不同签名图像和相似签名图像的分类识别。所提出的方法包括小波域的图像特征提取和利用径向基神经网络的模式分类。采用小波的多分辨分析方法对签名图像进行时频分析特别有效。熵和能量相关特征的概念用于小波域。径向基神经网络具有快速的收敛速度和分类能力。实验仿真证实了利用小波变换和径向基神经网络进行签名图像分类识别的有效性,且成功识别率为100%。 This paper focuses on the classification recognition of signature image by using wavelet transform and RBF neural network which contains different signature-image classification and similar signature-image classification. The proposed methods include feature extraction of image in wavelet domain and mode classification through RBF neural network. The analysis in time domain and frequency domain is especially effective when adopting multi-resolution analysis of signature image. The concept of entropy and energy concerned feature is applied to the wavelet domain. The RBF neural network owns fast speed in convergency and classification. The result of simulations proves the effectiveness of this method with the successful recognition rate of 100%.
作者 李伟
出处 《洛阳理工学院学报(自然科学版)》 2011年第1期65-68,92,共5页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
关键词 小波变换 径向基神经网络 签名图像特征提取 模式识别 wavelet transform RBF neural network feature extraction of signature image pattern recognition
  • 相关文献

参考文献5

  • 1Boggess A, Narcowic F J. A first course in wavelets with Fourier analysis[M].北京:电子工业出版社,2002:183-205.
  • 2GonzalezRc,WoodsRE.DigitalImageProcessing:SecondEdition[M].北京:电子工业出版社,2007.
  • 3SatishKumar.Neuralnetworks[M].北京:清华大学出版社,2006.
  • 4Sengur,A.Wavelet transform and adaptive neuro-fuzzy inference for color texture classification[J].Expert Systems with AI)plications,2008,34(3):2120-2128.
  • 5Theodoridis S,Koutroumbas K.Pattern Recognition:Fourth Edition[M].北京:机械工业出版社,2009.

共引文献2

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部