期刊文献+

金融时间序列的短期相依性研究

Study on the Temporal Dependence of Financial Time Series
下载PDF
导出
摘要 金融资产相依结构的研究在金融风险分析中有着重要的意义。金融资产的相依结构主要有两类:一类是单个金融资产自身时间前后交易价格波动的相依关系,称为短期相依关系,另一类是金融资产间的价格波动相依结构,称为同期相依关系。针对前一种相依关系,我们应用混合相依结构M-Copula函数模型对上海综合指数、香港恒生指数和美国道琼斯指数三种金融时间序列前后一个交易日的价格波动相依关系进行了分析。应用两步骤法对模型的参数进行估计,并对边缘分布和M-Copula模型进行了拟合优度检验。结果表明:混合M-Copula模型能够捕捉金融资产时间序列的短期相依关系的变化规律。 It is greatly interesting to investigate the dependence structure of financial assets in financial risk analysis. There are two types of dependence structures of financial assets : one is the dependence relationship of individual financial asset itself in different lime whieh is called temporal dependence relationship and the other is the dependence structure between difterent financial asscts which is defined as contemporaneous dependence. In this paper, we foeus on the former and propose a M -Copula model to investigate the temporal dependence for three stoek markets: the Shanghai Composite Index (SH), the Hang Seng Index (HK) and Dow -Jones Index (DJ). The two - stage maximum likelihood estimation is employed to estimate the parameters of model and the goodness of fit of margins and M - Copula model are tested. The results show that the M -Copula model may capture the temporal dependence structure of linancial time series.
作者 易文德
出处 《华东经济管理》 CSSCI 2011年第3期71-75,共5页 East China Economic Management
基金 教育部人文社会科学研究项目(08JA790142) 重庆市教育委员会科学技术研究项目(kj081214)
关键词 短期相依 COPULA函数 时间序列 尾部相关 temporal dependence copula function time series tail dependence
  • 相关文献

参考文献12

  • 1张尧庭.我们应该选用什么样的相关性指标?[J].统计研究,2002,19(9):41-44. 被引量:94
  • 2史道济.相关系数与相关性[J].统计科学与实践(天津),2002(4):22-24. 被引量:17
  • 3Nelsen R.An Introduction to Copulas[M].New York:Springer,1999.
  • 4Frees EW,Valdez EA.Understanding Relationships Using Copulas[J].North American Actuarial Journal,1998,2:1-25.
  • 5Embrechts P,MeNeil A,Straumaann d.Correlation and dependence Properties in Risk Management:Properties and Pitfalls[M].Cambridge:Cambridge University Press,2002.
  • 6Darsow W,Nguyen B,Olsen E.Copulas and Markov processes[J].Illinois Journal of Mathematics,1992,36:600-642.
  • 7Joe H.Multivariate Models and Dependence Concepts[M]:Chapman & Hall/CRC,1997.
  • 8Yi W D,Liao S S Y.Statistical properties of parametric estimators for Markov chain vectors based on copula models[J].Journal of Statistical Planning and Inference,2010,140(6):14965-1480.
  • 9Chen X,Fan Y.Estimation of Copula-based Semiparametric Time Series Models[J].Journal of Econometrics,2006,130:307-335.
  • 10易文德.基于Copula函数模型的股市交易量与股价相依关系[J].系统工程,2010,28(10):36-41. 被引量:17

二级参考文献17

  • 1蒋祥林,王春峰,吴晓霖.中国股市信息流、波动性与交易量关系[J].系统工程理论方法应用,2005,14(1):5-10. 被引量:6
  • 2杨炘,王邦宜.交易量与股价波动性:对中国市场的实证研究[J].系统工程学报,2005,20(5):530-534. 被引量:13
  • 3Telser L G. Margins and futures contracts [J]. Journal of Futures Markets,1981,1:225-253.
  • 4Shalen C T. Volume, volatility, and the dispersion of beliefs [J ]. Review of Financial Studies, 19 9 3, 6 : 405-434.
  • 5Admati A R, Pfleiderer P. A theory of intraday patterns: volume and price variability[J]. Review of Financial Studies, 1988,1 (1) : 3 - 40.
  • 6Clark P, A subordinated stochastic process model with finite variance for speculative prices [J]. Econometrica, 19 7 3,41 : 13 5 - 15 5.
  • 7Suteliffe C M S. Stock index futures: Theories and international evidence[M]. Chapman & Hall, 1993.
  • 8Lamoureux C G, Lastrapes W D. Heteroskedasticity in stock returns data: volume versus GARCH effects [J]. Journal of Finance,1990,45:221-259.
  • 9Sharma J L, et al. Heteroseedasticity in stock market indicator return data:volume versus GARCH effects [J]. Applied Financial Economics, 1996, 6: 337- 342.
  • 10Floros C, Vougas D V. Trading volume and returns relationship in Greek stock index futures market: GARCH vs. GMM [J]. International Research Journal of Finance and Economics, 2007, 12:98 -115.

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部