摘要
在利用KD-树进行粗差剔除的基础上,结合机载LiDAR数据的多回波特性剔除不必要的冗余数据,利用形态学重建的方法对机载LiDAR数据进行滤波,且运行时只需要输入一个参数。使用国际摄影测量与遥感学会(ISPRS)提供的测试数据对算法进行实验,并与国际上8种滤波算法进行对比,结果表明,该算法对各种场景的适应性较强,既能有效地去除非地面点,又能很好地保留地面点,使Ⅰ类误差、Ⅱ类误差和总体误差分别保持在9.93%、7.27%和9.76%以下,整体性能优于经典的滤波方法。
A method is proposed for filtering.KD-tree is employed to eliminate the blunders,only last returns and singular echoes are retained for filtering after making multi-returns analysis,and morphological reconstruction is used to achieve the DEM from the DSM.Compared to the existing methods,it only needs one human input,and the input has a very simple indication.The experimental results show that our method can retain the ground points and eliminate the non-ground point as much as possible.That is the type I error,type II error,total error are kept within 9.93%,7.27% and 9.76%.
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2011年第2期167-170,175,共5页
Geomatics and Information Science of Wuhan University
基金
国家973计划资助项目(2006CB701303))
关键词
机载LIDAR
滤波
数学形态学
形态学重建
测地膨胀
airborne LiDAR
filtering
mathematic morphology
morphological reconstruction
geodesic dilate