期刊文献+

基于现代控制技术的AGC实时优化控制系统及其应用 被引量:5

Research and Application of AGC Real-time Optimization Control System Based on Modern Control Technology
原文传递
导出
摘要 针对华能太仓电厂600 MW超临界机组存在负荷升降速率低、关键参数波动大及系统不能很好适应煤种变化等实际问题,通过有机融合预测控制技术、神经网络学习技术及自适应控制技术,提出了现代火电机组AGC控制的先进解决方案,研制了AGC实时优化控制装置INFIT,实际应用表明:即使在煤种变化的情况下,INFIT均能成功地将AGC的负荷升降速率提高到2.0%/min以上,并能有效地减小主汽压力、各级汽温、给煤量及给水量等关键参数的波动,确保了大型火电机组的安全、稳定及高效运行。 Considering the practical problems in 600 MW supercritical power units of Huaneng Taichang Power Plant,such as low load changing rate,large fluctuation of the key parameters and low adaption capability to the coal type change,the advanced AGC control solution scheme of the modern thermal power unit is proposed and the AGC real-time optimal control device INFIT is developed through organic integration of predictive control technology,neural network technology and adaptive control technology.The practical application shows that the INFIT can successfully raise the AGC load changing rate up to more than 2.0%/min even in the coal changing condition;besides,the fluctuation of the key parameters is decreased efficiently,including the main steam pressure,multistage steam temperature,coal feed quantity and water feed quantity,which ensure the safe,stable and efficient operation of the large thermal power unit.
机构地区 华能太仓电厂
出处 《华东电力》 北大核心 2011年第1期153-156,共4页 East China Electric Power
关键词 超临界机组 自动发电控制 协调控制系统 预测控制 自适应控制 supercritical power unit automatic power generation control coordinated control system predictive control adaptive control
  • 相关文献

参考文献3

二级参考文献30

  • 1YANG Ge1, LV Jianhong1 & LIU Zhiyuan2 1. Department of Power Engineering, Southeast University, Nanjing 210096, China,2. Department of Power Engineering, Nanjing Institute of Technology, Nanjing 210013, China.A new sequential learning algorithm for RBF neural networks[J].Science China(Technological Sciences),2004,47(4):447-460. 被引量:5
  • 2[1]Platt J. A resource-allocating network for function interpolation. Neural Computation, 1991, 3(2): 213~225
  • 3[2]Kadirkamanathan V, Niranjan M. A function estimation approach to sequential learning with neural networks. Neural Computation, 1993, 5(4): 954~975
  • 4[3]Lu Y W, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial function neural networks. Neural Computation, 1997, 9(2): 461~478
  • 5[4]Deng J P, Sundararajan N, Saratchandran P. Communication channel equalization using complex-valued minimal radial Basis Function Neural Networks. IEEE Trans Neural Networks, 2002, 13(3): 687~696
  • 6[5]Leong T K, Sundararajan N, Saratchandran P. Real-time performance evaluation of the minimal radial basis function network for identification of time varying nonlinear systems. Computers and Electrical Engineering, 2002, 28:103~117
  • 7[6]Giampiero Campa, Mario Luca Fravolini, Marcello Mapolitano, et al. Neural nerworks-based sensor validation for the flight control system of a B777 research model. Proceedings of the American Control Conference Anchorage, 2002, 5:8~10
  • 8[7]Li Y, Sundararajan N, Saratchandran P. Neuro-flight controllers for aircraft using minimal resource allocating networks (MRAN). Neural Comput & Applic, 2001, 10:172~183
  • 9[9]Li, Y, Sundararajan N, Saratchandran P. Analysis of minimal radial basis function network algorithm for real-time identification of nonlinear dynamic systems. IEE Proc Control Theory Appl, 2000, 147(4):476~484
  • 10Nag P K. Power Plant Engineering(Second Edition)[M]. Boston Mcgraw-Hill Companv, 2002.

共引文献55

同被引文献21

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部