期刊文献+

柴油机EGR温度的智能控制策略 被引量:2

Intelligent Control Strategy of EGR Temperature for Diesel Engine
下载PDF
导出
摘要 利用改进的BP神经网络算法,建立了样本柴油机排气温度的神经网络模型,通过柴油机台架实验采集柴油机转速、负荷、油耗、排气温度等参数作为神经网络模型学习样本,使用实验数据对所建立模型进行训练,并对该神经网络模型进行了误差分析,结果表明,所建神经网络模型反映了实验样机的排气温度变化规律,在测试数据范围内,排气温度辨识误差小于1.0%,满足计算要求.最后将神经网络预测模型与模糊推理结合,实现了柴油机排气再循环温度的智能控制. In this paper,first,a neural network model describing the exhaust temperature of a diesel engine sample is established based on the improved BP neural network algorithm.Next,some data of engine speed,engine power,fuel consumption and exhaust temperature are obtained from beach tests,which are then used to train the established model.Finally,an error analysis is performed to verify the model.The results indicate that the established neural network model well describes the variation of exhaust temperature,and that the errors of the identification results,which are all less than 1%,meet the requirements of calculation.In addition,the intelligent temperature control of exhaust gas recirculation(EGR) is realized by combining the BP neural network model with the fuzzy inference.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期147-151,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省自然科学基金资助项目(B21B6070440) 华南理工大学SRP项目(Y1090110) 国家大学生创新实验项目(081056102)
关键词 BP神经网络 柴油机 排气温度 排气再循环 BP neural network diesel engine exhaust temperature exhaust gas recirculation
  • 相关文献

参考文献9

二级参考文献23

  • 1丁晖,刘君华,申忠如.在线小波变换技术在气体传感器漂移故障检测中的应用[J].仪器仪表学报,2002,23(z3):25-27. 被引量:2
  • 2李文军,张洪坤,程秀生.基于小波和神经网络的传感器故障诊断[J].吉林大学学报(工学版),2004,34(3):491-495. 被引量:17
  • 3Jin J, Shi J. Feature preserving data compression of stamping tonnage information using wavelets[ J]. Technometrics, 1999,41 (4) :327 - 339
  • 4LEES F P.Some data on the failure modes of instruments in the chemical plant environment [ J]. Chem Eng, 1972,264 : 304 - 309
  • 5ANYAKORASN, LEES F P, Detection of instrument malfunction by process operator[J]. Chem Eng, 1973,277:418 - 421
  • 6Akansuan, Haddad R A. Multiresolution signal decomposition: Transforms, Subband, wavelets[ M]. New York: Academic, 1992.
  • 7Bhavik R. Bakshi. Prakhar Bansal, Mohamed N. Nounou. Multiscale Rectification of Random Errors without Fundamental Process Models.Computer & Chemical Engineering.Supplement 1, May, 1997, 24: 1167- 1172
  • 8A wavelet - based approach to abrupt fault detection and diagnosis of sensors[ J]. IEEE,2001, (50).
  • 9Shuyi Wang,Shangyu Xie. Diffusive Combustion of Fuel Spray in a DI Gasline Engine[C]. SAE,2001 -01 -2524.
  • 10Rumelhart D E, Mecldand J L. Parallel Distributed ProcessingI[M]. Cambridge: MIT Press, 1986.

共引文献40

同被引文献22

  • 1颜文胜,申立中,郑伟,雷基林,毕玉华,沈颖刚.文丘利管在增压中冷柴油机EGR系统中的应用[J].农业机械学报,2006,37(6):5-8. 被引量:12
  • 2Susumu Kadhketsu.EGR Technologies for a Turbochargedand Intercooled Heavy Duty Engine[C].SAE Paper970340,1997.
  • 3Vahid Hosseini,M.David Checkel.Reformer Gas Composi-tion Effect on HCCI Combustion of n-Heptane,Iso-Oc-tane,and Natural Gas[C].SAE paper 2007-01-0049.
  • 4Guang-Bin Huang,Qin-Yu Zhu,Chee-Kheong Siew.Extreme learning machine: Theory and applications[J].Neurocomputing.2006(1)
  • 5Manoj Khandelwal,M. Monjezi.Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method[J].Rock Mechanics and Rock Engineering.2013(2)
  • 6P. Ilamathi,V. Selladurai,K. Balamurugan,V. T. Sathyanathan.ANN–GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler[J].Clean Technologies and Environmental Policy.2013(1)
  • 7Slavica Marinovi?,Marko Kri?tovi?,Branka ?pehar,Vinko Rukavina,Ante Juki?.Prediction of diesel fuel properties by vibrational spectroscopy using multivariate analysis[J].Journal of Analytical Chemistry.2012(12)
  • 8Beno?t Frénay,Michel Verleysen.Parameter-insensitive kernel in extreme learning for non-linear support vector regression[J].Neurocomputing.2011(16)
  • 9Ali Azadeh,Najme Neshat,Afsaneh Kazemi,Mortezza Saberi.Predictive control of drying process using an adaptive neuro-fuzzy and partial least squares approach[J].The International Journal of Advanced Manufacturing Technology.2012(5)
  • 10张培林,徐超,任国全,傅建平,李兵.基于多维时间序列模型的内燃机磨损状态预测研究[J].润滑与密封,2010,35(6):37-40. 被引量:7

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部