期刊文献+

含非线性色散项的Kadomtsev-Petrishvili方程的破缺行波解

Breaking Traveling Wave Solutions of Kadomtsev-Petrishvili Equation with Nonlinear Dispersive Terms
下载PDF
导出
摘要 应用平面动力系统分支理论的方法,在参数平面上给出了含非线性色散项的Kadomtsev-Petrishvili方程的行波解的分支相图,从而揭示了其行波解与参数的依赖关系,并获得了该方程的破缺行波解的参数表示。 Bifurcation phase portraits of traveling wave solution for Kadomtsev-Petrishvili equation with nonlinear dispersive terms are given by using bifurcation theory of dynamical systems.Parametric representations of breaking traveling wave solutions of Kadomtsev-Petrishvili equation with nonlinear dispersive terms are obtained.
作者 高正晖 杨柳
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期34-38,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 湖南省自然科学基金资助项目(06JJ5001) 湖南省教育厅科研计划资助项目(09C171)
关键词 非线性色散Kadomtsev-Petrishvili方程 环状孤波解 破缺行波解 分支相图 Kadomtsev-Petrishvili equation nonlinear dispersive loop soliton solution breaking traveling wave solution bifurcation phase portrait
  • 相关文献

参考文献4

二级参考文献23

  • 1Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993,71(11): 1661-1664.
  • 2Boyd J P. Peakons and coshoidal waves: travelling wave solutions of the Camassa-Holm equation. Appl Math Comput, 1997, 81(2-3): 173-187.
  • 3Cooper F, Shepard H. Solitons in the Camassa-Holm shallow water equation. Phys Lett A, 1994, 194(4):246-250.
  • 4Constantin A. Soliton interactions for the Camassa-Holm equation. Exposition Math, 1997, 15(3): 251-264.
  • 5Liu Z G, Qian T F. Peakons of the Camassa-Holm equation. Applied Mathematical Modelling, 2002, 26:473-480.
  • 6Constantin A. Quasi-periodicity with respect to time of spatially periodic finite-gap solution of the CamassaHolm equation. Bull Sci Math, 1998, 127(7): 487-494.
  • 7Constantin A. On the Cauchy problem for the periodic Camassa-Holm equation. J Differential equations,1997, 141(2): 218-235.
  • 8Dai H H, Pavlov M. Maxim transformations for the Camassa-Holm equation, its high-frequency limit and the Sinh-Gordon equation. J Phys Soc Jpn, 1998, 67(11): 3655-3657.
  • 9Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Phys D, 1996, 95(3-4): 229-243.
  • 10Kouranbaeva S. The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J Math Phys,1999, 40(2): 857-868.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部