期刊文献+

基于优化支持向量机的飞机重着陆智能诊断 被引量:9

Airplane’s Hard Landing Diagnosis Based on Optimized Support Vector Machine
下载PDF
导出
摘要 为提高飞机重着陆判断的准确性,研究了将最小二乘支持向量机应用于飞机重着陆诊断的方法;首先,根据飞机着陆阶段运动方程确定5类关键的重着陆诊断指标,将传统的单一指标诊断扩展到多指标诊断;接着,对支持向量机的分类算法进行扩展,实现了支持向量机的多类分类,建立了飞机重着陆诊断模型;然后,分别利用遗传算法和粒子群算法优化了模型参数,并对优化结果进行了分析比较;最后,利用飞行品质监控数据库中的样本数据对某航空公司B737型飞机进行了重着陆诊断实验,结果表明:支持向量机模型具有较高的诊断精度,适用于飞机重着陆诊断。 In order to enhance the diagnosis accuracy, least square support vector machine (LS--SVM) was used to diagnose airplane' s hard landing. Firstly, according to airplane' s motion equation of landing phase, five major diagnosis indexes were determined and extended airplane~ s hard landing diagnosis from one index to several. Next, classification algorithm of SVM was expanded, multi--classes classifica- tion was realized and airplane' s hard landing diagnosis model was established. Then, genetic algorithm and particle swarm optimization al- gorithm were used to optimize the model parameters of SVM. The optimization result was analyzed and compared. Last, using the data of flight quality monitoring database, B737 airplanes of some airline were carried on the hard landing diagnosis experiment. The result shows that SVM model produces accurate diagnosis results and is suitable for airplane' s hard landing diagnosis.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第2期256-259,共4页 Computer Measurement &Control
基金 国家自然科学基金项目(60879008)
关键词 重着陆 诊断模型 支持向量机 参数优化 hard landing diagnosis model LS--SVM parameter optimization
  • 相关文献

参考文献13

  • 1Boeing 737 Aircraft Maintenance Manual [Z]. Boeing Company, 2006:37 - 38.
  • 2A320/A321 Aircraft Maintenance Manual [Z]. Airbus Industry, 2003: 44 - 45.
  • 3曹海鹏,舒平,黄圣国.基于神经网络的民用飞机重着陆诊断技术研究[J].计算机测量与控制,2008,16(7):906-908. 被引量:24
  • 4余廉.航空交通灾害预警管理[M].石家庄:河北科学技术出版社.2004.
  • 5Liang X F, Liu F. Choosing multiple parameters for SVM based on genetic algorithm [A]. Signal Processing, 2002 6th International Conference [C]. Beijing, China: Post&Telecom Press, 2002: 117 -119.
  • 6Kennedy J, Eberhart R C, Shi Y. Swarm Intelligence [M]. San Francisco: Morgan Kaufman Publisher, 2006.
  • 7Krebel U. Pairwise classification and support vector machines. Ad-vances in Kernel Methods Support Vector Learning [M]. Cambridge, MA: MIT Press, 1999: 255-268.
  • 8Bottou L, Cortes C, Denker J, et al. Comparison of classifier methods: a case study in handwriting digit recognition [A]. Proceedings of International Conference Pattern Recognition [C]. 1994: 77 -87.
  • 9Platt J C, Cristianini N, Shawe-taylor J. Large margin DAGs for multi-class classification. Advances in Neural Information Processing Systems [M]. Cambridge, MA: MIT Press, 2000: 547 -553.
  • 10Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines [J]. IEEE Transactions on Geosciences and Remote Sensing, 2004, 42 (8): 1778 -1790.

二级参考文献10

  • 1晋萍.飞机着陆动力响应分析模型及仿真[J].安徽工业大学学报(自然科学版),2005,22(2):150-152. 被引量:5
  • 2Boeing737 Aircraft maintenance manual [Z], Boeing Company, 2006.
  • 3B737 Operations manual [Z]. Boeing Company, 2006.
  • 4A320/A321 Aircraft Maintenance Manual [Z]. Airbus Industry, 2003.
  • 5中国民用航空总局.民用航空飞行事故汇编[R].北京:中国民用航空总局,2002.
  • 6余廉.航空交通灾害预警管理[M].石家庄:河北科学技术出版社.2004.
  • 7Singh G K, Saad A hmed Saleh Al Kazzaz. Induction machine drive condition monitoring and diagnostic research [J]. Electrical Power Systems Research 2003, 64 (2): 145-158.
  • 8Martin Spieck. Simulation of aircraft landing impact under consideration of aerodynamic forces on the flexible structure [R]. AIAA, 2004.
  • 9以涛.飞行数据分析及译码[J].航空工程与维修,2000(1):25-26. 被引量:13
  • 10何勇,李增芳.智能化故障诊断技术的研究与应用[J].浙江大学学报(农业与生命科学版),2003,29(2):119-124. 被引量:47

共引文献24

同被引文献92

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部