期刊文献+

基于UKF的INS/GPS组合导航系统仿真 被引量:4

A Simulation of INS/GPS Based on Unscented Kalman Filter
下载PDF
导出
摘要 通过Unscented卡尔曼滤波(UKF)算法,研究INS/GPS紧耦合组合导航系统中滤波算法的问题,避免了对非线性的系统方程进行线性化。同时将自适应原理引入UKF,给出了一种自适应UKF算法。将EKF、UKF和自适应UKF分别应用到INS/GPS组合导航系统的滤波中。仿真结果表明,相比UKF算法,自适应UKF算法进一步提高导航解的精度和收敛速度,同时系统的鲁棒性也得到了提高。 The Unscented Kalman Filter(UKF) is introduced to solve the filtering problem in the tight coupling of INS/GPS integrated navigation system,and avoid the linearization for nonlinear system equations.The adaptive estimation principle is applied for UKF to set up an adaptive UKF.The Extended Kalman Filter(EKF),UKF and the adaptive UKF are all applied to the INS/GPS integrated system.The simulation results show that the adaptive UKF provide higher convergence rate and estimation precision,and improve the robustness of the system.
出处 《科学技术与工程》 2011年第4期773-778,共6页 Science Technology and Engineering
关键词 扩展卡尔曼滤波 UNSCENTED卡尔曼滤波 自适应滤波 INS/GPS组合导航系统 extended Kalman filter unscented Kalman filter adaptive estimation INS/GPS integrated navigation system
  • 相关文献

参考文献7

  • 1秦永远,张洪铖,汪叔华等.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 3Julier S J,Uhlamnn J K.A new extension of Kalman filter to nonlinear systems.The Proceedings of the American control conference.Seattle Washington,1995:1628-1632.
  • 4Julier S J,Uhlamnn J K,Durrant Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimation.IEEE Trans on Automatic Control,2000;45(3):477-482.
  • 5Wan E A,Van Der Merwe R.The unscented Kalman filter for nonlinear estimation.Adaptive Systems for Signal Processing,Communication and Control Symp,2000:153-158.
  • 6周星伶.GPS/INS组合导航系统松、紧耦合性能比较[J].航空电子技术,2007,38(4):1-6. 被引量:20
  • 7周坤芳,吴晞,孔键.紧耦合GPS/INS组合特性及其关键技术[J].中国惯性技术学报,2009,17(1):42-45. 被引量:30

二级参考文献85

  • 1周坤芳,孔键,周湘蓉.紧耦合GPS/INS组合导航能力的分析[J].中国惯性技术学报,2005,13(6):50-53. 被引量:8
  • 2陈偲,王可东.惯性导航与卫星导航紧耦合技术发展现状[J].全球定位系统,2007,32(3):21-26. 被引量:18
  • 3Kondo S, Kubo N, Yasuda A. Evaluation of the pseudo range performance by using software GPS receiver[J]. Journal of Global Positioning System, 2005(4): 215-222.
  • 4Alban S. Performance analysis and architectures for INS-aided GPS tracking loops[C]//ION National Technical Meeting, Jan. 2003: 22-24.
  • 5Chiou T, Alban S, Atwaer S. Performance analysis and experimental validation of a Doppler-aided GPS/INS receiver for JPALS applications [C]//Proceedings of ION GNSS 17th International technical meeting of the satellite division. Long Beach, 21-24 September, 2004: 1609-1618.
  • 6Wendle J. Comparison of extended and sigma-point Kalman filters for tightly coupled GPS/INS integration[C]// AIAA 2005-6055[R]. Germany: University of Karlsruhe, 2005.
  • 7泰永元.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998..
  • 8Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 9Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 10Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.

共引文献276

同被引文献27

  • 1程向红,郑梅.捷联惯导系统初始对准中Kalman参数优化方法[J].中国惯性技术学报,2006,14(4):12-17. 被引量:36
  • 2杨元喜,高为广.两种渐消滤波与自适应抗差滤波的综合比较分析[J].武汉大学学报(信息科学版),2006,31(11):980-982. 被引量:31
  • 3宋迎春,朱建军,陈正阳.动态定位中测量噪声时间相关的Kalman滤波[J].测绘学报,2006,35(4):328-331. 被引量:20
  • 4王惠南.GPS导航原理与应用[M].北京:科学出版社,2004.
  • 5HIDE C, MOORE T. GPS and low cost INS integration for po- sitioning in the urban environment [ C ]// Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation. [ s. 1. ], 2005 : 1007-1015.
  • 6JULIER S J , UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear system [ C ]//Proc of the American Control Conference. Seattle, USA, 1995 : 1628-1632.
  • 7ZHOU Junchuan, KNEDLIK S, EDWAN E, et al. Low- cost INS/GPS with nonlinear filtering methods[ C]//2010 13th Conference on Information Fusion(FUSION). Siegen, Germany, 2010 : 1-8.
  • 8JWO Dahjing, LAI Shihyao. Navigation integration using the fuzzy strong tracking unscented Kalman filter [ J ]. The Journal of Navigation, 2009, 62 (2) : 303-322.
  • 9ZHANG Liguo, MA Haibo, CHEN Yangzhou. Square-root un- scented Kalman filter for vehicle integrated navigation [ C ]// Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, HongKong, 2007: 556-561.
  • 10赵琳,王小旭,丁继成,曹伟.组合导航系统非线性滤波算法综述[J].中国惯性技术学报,2009,17(1):46-52. 被引量:74

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部