期刊文献+

MIMO雷达最大似然参数估计 被引量:5

On the maximum likelihood method for target localization using MIMO radars
原文传递
导出
摘要 多输入多输出(MIMO)雷达使用多个天线同时发射多个独立探测信号,并使用多个天线接收目标回波信号.本文考虑了发射空域分集、相干接收MIMO雷达模型及其最大似然(ML)参数估计方法.基于最大似然准则,本文推导了两种渐近最大似然算法.仿真实验的结果表明,在均匀噪声模型中,其中一种渐近算法与基于延迟求和波束形成的最大似然算法性能接近,而另一种渐近算法性能略差,但具有较低的计算复杂度.而在非均匀噪声模型中,本文所提出的两种渐近最大似然算法的性能均优于基于延迟求和波束形成的最大似然算法. A multiple-input multiple-output(MIMO) radar uses multiple antennas to simultaneously transmit multiple independent probing signals,and uses multiple antennas to receive the backscattered signals.The modeling of MIMO radar with transmit spatial diversity and coherent reception is addressed herein.The maximum likelihood(ML) method for parameter estimation using MIMO radars is considered,and two approximate ML algorithms are proposed.In the uniform noise scenario,one of the proposed algorithms performs similarly to the delay-and-sum beamformer which is optimal in the ML sense in single target case,while it outperforms the other proposed approximate ML algorithm at the cost of more computational load.In the non-uniform noise scenario,the proposed approximate ML algorithms both outperform the delay-and-sum beamformer.The efficiency of the proposed methods is validated by the simulation results.
机构地区 电子科技大学
出处 《中国科学:信息科学》 CSCD 2011年第2期234-245,共12页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:60672044)资助项目
关键词 多输入多输出(MIMO)雷达 参数估计 最大似然估计 multiple-input multiple-output(MIMO) radars parameter estimation maximum-likelihood
  • 相关文献

参考文献4

二级参考文献36

  • 1保铮,张庆文.一种新型的米波雷达──综合脉冲与孔径雷达[J].现代雷达,1995,17(1):1-13. 被引量:57
  • 2Cover T M, Thomas J A. Elements of Information Theory. New York: John Wiley & Sons, 1991.
  • 3Paulraj A, Nabar R, Gore D. Introduction to space-time wireless communication. Cambridge: Cambridge University Press, 2003.
  • 4Fishler E. Spatial diversity in radars-Models and detection performance. IEEE Trans Signal Process, 2006, 54(3): 823- 838.
  • 5Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers. Piscataway, N J: IEEE Press, 2003. 1057-1064.
  • 6Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars. IEEE Trans Signal Process,2006, 54(10): 3873-3883.
  • 7Wu Y, Tang J, Peng Y N. Analysis on rank of channel matrix for monostatic MIMO radar system. In: 2006 CIE International Conference on Radar, Shanghai, 2006. 69-72.
  • 8Rabideau D J, Parker P. Ubiquitous MIMO Multifunction Digital Array Radar and the Role of Time-Energy Management in Radar, Project Report of Lincoln Laboratory, Oct. 2003.
  • 9Fishier E, Haimovich A M, Blum R S, et al. MIMO radar: An idea whose time has come. In: Proceedings of 2004 IEEE Radar Conference, Philadephia, Apr. 2004. 71-78.
  • 10Fishler E, Haimovich A M, Blum R S, et al. Performance of MIMO radar systems: advantages of angular diversity. In: Proceedings of the Thirty-Eighth Asilomar Conference on Signals, System and Computers, California, Nov. 2004. 305 -309.

共引文献108

同被引文献58

  • 1Wheeler T T, Haigh B J, McCracken J Y, et al. The BSP30salivary proteins from cattle, LUNX/PLUNC and von Ebner's minor salivary gland protein are members of the PSP/LBP superfamily of proteins. Biochim Biophys Acta, 2002, 1579 (2 ~ 3): 92 ~ 100
  • 2陈伯孝,吴剑旗等.综合脉冲孔径雷达[M].北京:国防工业出版社,2011.08.
  • 3丁鹭飞,耿富录,陈建春.雷达原理[M].4版.北京:电子工业出版社,2011.5,206-207.
  • 4BLISS D W, FORSYTHE K W. Multiple-Input Multi- ple-Output (MIMO) Radar and Imaging: Degrees of Freedom and Resolution[ C ]// Conference Record of the 37th Asilomar Conference on Signals, Systems and Computers, 2003:54 -59.
  • 5FORSYTHE K M, BLISS D W, FAWCETT G S. Multi- ple-Input Multiple-Output (MIMO) Radar: Perform- ance Issues [ C ]//38th Asilomar Conference on Signals, Systems and Computers , 2004: 310-315.
  • 6ROBEY FRANK C, Coutts Scott, Weikle Dennis, et al. MIMO Radar Theory and Experimental Results [ C ] // Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004 : 1107 - 1110.
  • 7FORSYTHE K W, BLISS D W. Waveform Correlation and Optimization Issues for MIMO Radar [ C ] //39th Asilomar Conference on Signals, Systems and Comput- ers, 2005 : 1306 -1310.
  • 8JEN KING Jao. Coherent Muhilateral Radar Processing for Precise Target Geolocation [ C ]//2006 IEEE Radar Conference, 2006:325 -330.
  • 9SWINDLEHURST L, STOICA P. Maximum Likelihood Methods in Radar Array Signal Processing [ J]. Proc. IEEE, 1998, 86(2) : 421-441.
  • 10HAYKIN S, LITVA J, SHEPHERD T J. Radar Array Processing[ M ]. 1st ed. New York: Springer-Verlag, 1993.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部