摘要
用概率神经网络的方法,以河北省白洋淀为研究对象,对其水质进行评价分析,并将其结果与灰色聚类方法和BP神经网络方法评价结果作比较。结果表明,用概率神经网络进行评价过程简单,计算用时少,评价避免了人为因素的干扰,结果更加准确并切合实际情况,提高了水质评价的准确性。
The Probabilistic Neural Networks(PNN) method is used to evaluate Baiyangdian's water quality.And the evaluation results are compared with the results of another two methods i.e.grey clustering evaluation and BP neural network.The comparisons indicate that the evaluation process of PNN is much simpler,less time calculation,less artificial effect;the evaluation results are more accurate and practical,and the PNN method is more applicable to water quality evaluation.
出处
《中国农村水利水电》
北大核心
2011年第2期25-27,共3页
China Rural Water and Hydropower
关键词
概率神经网络
白洋淀水质
富营养化
水质评价
probabilistic neural networks(PNN)
Baiyangdian's water quality
eutrophication
water quality evaluation