摘要
In this paper we define a Rankin-Selberg L-function attached to automorphic cuspidal represen-tations of GLm(AE) × GLm (AF ) over cyclic algebraic number fields E and F which are invariant under the Galois action,by exploiting a result proved by Arthur and Clozel,and prove a prime number theorem for this L-function.
In this paper we define a Rankin-Selberg L-function attached to automorphic cuspidal represen-tations of GLm(AE) × GLm (AF ) over cyclic algebraic number fields E and F which are invariant under the Galois action,by exploiting a result proved by Arthur and Clozel,and prove a prime number theorem for this L-function.
基金
supported by the Independent Innovation Foundation of Shandong University