期刊文献+

Quantum Weyl symmetric polynomials and the center of quantum group U_q(sl_4) 被引量:1

Quantum Weyl symmetric polynomials and the center of quantum group U_q(sl_4)
原文传递
导出
摘要 Suppose that q is not a root of unity, it is proved in this paper that the center of the quantum group Uq(sl4) is isomorphic to a quotient algebra of polynomial algebra with four variables and one relation. Suppose that q is not a root of unity, it is proved in this paper that the center of the quantum group Uq(sl4) is isomorphic to a quotient algebra of polynomial algebra with four variables and one relation.
出处 《Science China Mathematics》 SCIE 2011年第1期55-64,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10771182) Doctorate Foundation Ministry of Education of China (Grant No. 200811170001)
关键词 quantized enveloping algebra quantum group quantum symmetric polynomials CENTER 多项式代数 量子群 对称 单位根 商代数 昆士兰 同构
  • 相关文献

参考文献16

  • 1Michio Jimbo.Aq-difference analogue of U(g) and the Yang-Baxter equation[J]. Letters in Mathematical Physics . 1985 (1)
  • 2Baumann P.On the centers of quantized enveloping algebras. Journal of Algebra . 1998
  • 3Caldero P.On the q-commutations in Uq(n). Journal of Algebra . 1998
  • 4Dixmier J.Enveloping Algebras. Grad Stud Math . 1996
  • 5Farkas D R.Multiplicative invariants. Enseignement Mathematique . 1984
  • 6Jantzen J C.Lecture on quantum groups. Grad Stud Math . 1996
  • 7Kassel C.Quantum Groups. . 1995
  • 8Lorenz M.Multiplicative Invariant Theory. . 2006
  • 9Li L B,Wu J Y,Pan Y.Quantum Weyl polynomials and the center of quantum group Uq(sl3). Algebra Colloquium .
  • 10Anna Lachowska.On the center of the small quantum group. Journal of Algebra . 2003

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部