期刊文献+

The invariance principle for fractionally integrated processes with strong near-epoch dependent innovations

The invariance principle for fractionally integrated processes with strong near-epoch dependent innovations
原文传递
导出
摘要 In this paper, we show the invariance principle for the partial sum processes of fractionally integrated processes, otherwise known as I(d + m) processes, where |d| < 1/2 and m is a nonnegative integer, with strong near-epoch dependent innovations. The results are applied to the test of unit root. The conditions given improve previous results in the literature concerning fractionally integrated processes. In this paper, we show the invariance principle for the partial sum processes of fractionally integrated processes, otherwise known as I(d + m) processes, where |d| 〈 1/2 and m is a nonnegative integer, with strong near-epoch dependent innovations. The results are applied to the test of unit root. The conditions given improve previous results in the literature concerning fractionally integrated processes.
出处 《Science China Mathematics》 SCIE 2011年第1期117-132,共16页 中国科学:数学(英文版)
基金 supported by National Social Science Foundation of China (Grant No.07CTJ001) National Research Project for Statistics (Grant No. 2009LY056) National Natural Science Foundation of China (Grant Nos. 10901136, 71072113)
关键词 near-epoch dependence strong near-epoch dependence invariance principle fractionally integrated processes 不变原理 进程 创新 单位根检验 过程集成 非负整数 部分和 分数
  • 相关文献

参考文献3

二级参考文献34

  • 1[1]Johansen, S. Statistical analysis of cointegrated vectors. Journal of Economic Dynamics and Control, 1988, 12: 231.
  • 2[2]Johansen, S. Estimation and hypothesis testing of cointegrated vectors in Gaussian vector autoregressive models. Econometrica, 1991, 59: 1551.
  • 3[3]Park, J. Y. et al. Statistical inference in regressions with integrated processes, part 1. Econometric Theory, 1988, 4: 468.
  • 4[4]Park, J. Y. et al. Statistical inference in regressions with integrated processes, part 2. Econometric Theory, 1989, 5: 95.
  • 5[5]Phillips, P. C. B. Time series regression with a unit root. Econometrica, 1987, 55: 277.
  • 6[6]Phillips, P. C. B. et al. Multiple time series regression with integrated processes. Review of Economic Studies LIII, 1986, 4: 473.
  • 7[7]Davidson, J. Stochastic Limit Theory. Oxford: Oxford University Press, 1994.
  • 8[8]Davidson, J. A central limit theorem for globally nonstationary near-epoch dependent functions of mixing processes. Econometric Theory, 1992 , 8: 313.
  • 9[9]De Jong, R. M. Central limit theorems for dependent heterogeneous random variables. Econometric Theory, 1997, 13: 353.
  • 10[10]De Jong, R. M. et al. The functional central limit theorem and weak convergence to stochastic integral I: Weakly dependent processes. Econometric Theory, 2000, 16: 612.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部