期刊文献+

Brascamp-Lieb inequality for positive double John basis and its reverse 被引量:5

Brascamp-Lieb inequality for positive double John basis and its reverse
原文传递
导出
摘要 In this paper, we establish the Brascamp-Lieb inequality for positive double John basis and its reverse. As their applications, we estimate the upper and lower bounds for the volume product of two unit balls with the given norms. Moreover, the Loomis-Whitney inequality for positive double John basis is obtained. In this paper, we establish the Brascamp-Lieb inequality for positive double John basis and its reverse. As their applications, we estimate the upper and lower bounds for the volume product of two unit balls with the given norms. Moreover, the Loomis-Whitney inequality for positive double John basis is obtained.
出处 《Science China Mathematics》 SCIE 2011年第2期399-410,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 10971128) Shanghai Leading Academic Discipline Project (Grant No. S30104) Scientific Research and Innovation Project of Shanghai Municipal Education Commission (Grant No. 09ZZ94) Innovation Foundation of Shanghai University (Grant No. SHUCX080134)
关键词 Brascamp-Lieb inequality and its reverse John basis positive double John basis mass transportation ZONOTOPE 不等式 基础 反向 单位球 体积 估计 上积
  • 相关文献

参考文献29

  • 1Ball K.Volumes of sections of cubes and related problems. Israel Seminar on Geometric Aspects of Functional Analysis . 1989
  • 2Barthe F.An extremal property of the mean width of the simplex. Mathematische Annalen . 1998
  • 3Barthe F.A continuous version of the Brascamp-Lieb inequalities. Geometric Aspects of Functional Analysis . 2004
  • 4Barthe F,Cordero-Erausquin D.Inverse Brascamp-Lieb inequalities along the heat equation. Geometric Aspects of Functional Analysis . 2004
  • 5Bastero J,Romance M.John’s decomposition of the identity in the non-convex case. Positivity . 2002
  • 6Burago Y D,Zalgaller V A.Geometric Ineuqalities. . 1988
  • 7Giannopoulos A,Perissinaki I,Tsolomitis A.John’s theorem for an arbitrary pair of convex bodies. Geometriae Dedicata . 2001
  • 8Gordon Y,Litvak A E,Meyer M, et al.John’s decomposition in the general case and applications. Journal of Differential Geometry . 2004
  • 9Lewis D.Ellipsoids defined by Banach ideal norms. Mathematika . 1979
  • 10Tomczak-Jaegermann N.Banach-Mazur Distances and Finite-dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38 . 1989

同被引文献8

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部