期刊文献+

Estrogen-related receptor γ disruption of source water and drinking water treatment processes extracts 被引量:1

Estrogen-related receptor γ disruption of source water and drinking water treatment processes extracts
原文传递
导出
摘要 Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRy two-hybrid yeast assay to screen ERRy disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistie activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRγ antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 μg/L. In the treatment processes, secondary chlorination was effective in removing ERRy antagonists, but the coagulation process led to significantly increased ERRy antagonistic activity. The drinking water treatment processes removed 73.5 % of ERRy antagonists. To our knowledge, the occurrence of ERRy disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRγ disrupting activities in drinking water. Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRy two-hybrid yeast assay to screen ERRy disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistie activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRγ antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 μg/L. In the treatment processes, secondary chlorination was effective in removing ERRy antagonists, but the coagulation process led to significantly increased ERRy antagonistic activity. The drinking water treatment processes removed 73.5 % of ERRy antagonists. To our knowledge, the occurrence of ERRy disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRγ disrupting activities in drinking water.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第2期301-306,共6页 环境科学学报(英文版)
基金 supported by the National High Technology Research and Development Program (863) of China(No. 2007AA06Z414) the National Natural Science Foundation of China(No. 50778170)
关键词 drinking water estrogen receptor estrogen-related receptor two-hybrid yeast solid phase extraction drinking water estrogen receptor estrogen-related receptor two-hybrid yeast solid phase extraction
  • 相关文献

参考文献2

二级参考文献6

共引文献62

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部