期刊文献+

多普勒辅助测量IMM-PF机动目标跟踪 被引量:8

Maneuvering Target Tracking Using IMM-PF with Doppler-Aided Measurement
下载PDF
导出
摘要 针对机动目标跟踪问题,提出了一种辅助多普勒测量的交互多模型粒子滤波算法。该算法利用粒子滤波解决系统观测与目标状态之间的非线性问题,并辅助多普勒测量信息在线估计目标角速率,作为目标转弯模型的参数。采用两个可内部切换的运动模型(常速度/逆时针转弯模型、常速度/顺时针转弯模型)作为交互模型,有效地描述了目标机动并减少了模型个数,进一步提高了算法的效率。对一个以不同角速率多次转弯的机动目标进行跟踪仿真,结果验证了算法的可行性和优越性。 To cope with the problem of maneuvering target tracking,an improved interactive multiple model particle filtering(IMM-PF) algorithm is proposed on the basis of Doppler-aided measurement.The algorithm adopts the PF to deal with the nonlinear relation of the measurements and states of target.The angular rate of the target used in the CT model is estimated by the Doppler-aided measurement on-line.The two switching model(CV/counter clockwise CT model and CV/clockwise CT model) are used as the interactive multiple model.This method could describe the target maneuvering accurately,and the filtering efficiency is improved by using less models.The tracking simulation results of the maneuvering target which turned at different angular for many times rates demonstrate feasibility and superiority of the novel algorithm.
出处 《宇航学报》 EI CAS CSCD 北大核心 2011年第2期343-348,共6页 Journal of Astronautics
基金 "十一五"国防预研项目(51309030102 51309030203)
关键词 多普勒测量 粒子滤波 交互多模型 机动目标跟踪 Doppler measurement Particle filtering Interactive multiple model Maneuvering target tracking
  • 相关文献

参考文献13

  • 1Blom H A P, Bar-shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J ]. IEEE Transactions on Automatic Control, 1958, 33(8): 780-783.
  • 2Wang W, Kirubarajan T, Bar-Shalom Y. Precision large scale air traffic surveillance using IMM/assignment' s estimators [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 255-265.
  • 3Efe M, Atherton D P. Maneuvering target tracking using adaptive turn rate models in the interacting multiple model algorithm[ C ]. The 35th Conference on Decision and Control, Kobe, Japan, Dec. 1996.
  • 4孙福明,吴秀清,王鹏伟.转弯机动目标的两层交互多模型跟踪算法[J].控制理论与应用,2008,25(2):233-236. 被引量:13
  • 5Bizup D F. A centripetal acceleration statistic for tracking maneuve- ring targets with radar [ C ]. The 7th International Command and Control Research Technology Symposium, Quebec City, Sep. 2002.
  • 6Bizup D F, Brown D E. Maneuver detection using the radar range rate measurement [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40 (1) : 330 -336.
  • 7Yuan X H, Han C Z, Duan Z S, et al. Adaptive turn rate estimation using range rate measurements[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4) : 1532 -1540.
  • 8Duan Z S, Han C Z, Li X R. Sequential nonlinear tracking filter with range-rate measurements in spherical coordinates[ C ]. The 7th International Conference on Information Fusion, Stockholm, Sweden. 2004.
  • 9祝依龙,范红旗,付强.视线坐标系带多普勒观测的雷达目标跟踪[J].雷达科学与技术,2009,7(3):200-204. 被引量:1
  • 10Gordon N J, Salmond D J, Smith A F M. Novel approach to non- linear/non-gaussian Bayesian state estimation [ J]. IEE Proc. - Radar, Sonar Navig, 1993(140): 107- 113.

二级参考文献19

  • 1李涛,王宝树,乔向东.曲线模型的半自适应交互多模型跟踪方法[J].电子学报,2005,33(2):332-335. 被引量:13
  • 2BAR·SHALOM YAAKOV,BLAIR W D.Multitarget-Multisensor Tracking:Applications and Advances[M].Norwood,MA:Artech House,2000.
  • 3JILKOV V P,ANGELOVA D S,SEMERDJIEV TZ A.Design and comparison of model-set adaptive IMM algorithms for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(1):343-350.
  • 4LI Xiaorong.Multiple-model estimation with variable structure-part Ⅱ:model-set adaptation[J].IEEE Transactions on Automatic Control,2000,45(11):2047-2060.
  • 5LI Xiaorong,JILKOV V P,RU Jifeng.Multiple-model estimation with variable structure-part Ⅵ:expected-mode augmentation[J].IEEE Transcations on Aerospace and Electronic Systems,2005,41(3):853-867.
  • 6BLACKMAN S,POPOLI R.Design and Analysis of Modern Trackins Systems[M].Norwood,MA:Artech House,1999.
  • 7BEST R A,NORTON J P A new model and efficient tracker for a target with curvilinear motion[J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(3):1030-1037.
  • 8ZHOU Hongren.Tracking of maneuvering targets[D].Minneapolis:University of Minnesota,1984.
  • 9Farina A,Studer F A.Radar Data Processing,Vol I:Introduction and Tracking,Vol II:Advanced Topicsand Applications[]..1985
  • 10Dai Y P,Jin C Z,Hu J L,et al.A Target TrackingAlgorithm with Range Rate Under the Color Measure-ment Environment[].Proc of the th SICE AnnualConference.1999

共引文献12

同被引文献69

  • 1杨争斌,郭福成,周一宇.迭代IMM机动目标被动单站跟踪算法[J].宇航学报,2008,29(1):304-310. 被引量:5
  • 2臧荣春,崔平远.马尔可夫参数自适应IFIMM算法研究[J].电子学报,2006,34(3):521-524. 被引量:27
  • 3何友,王国宏.传感器信息融合及其应用[M].北京:电子工业出版社,2000.
  • 4Poison N G, Stroud J R, Muller P. Practical filtering with sequential parameter learning [ J ]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2008,70 ( 2 ) : 413 - 428.
  • 5Kotecha J H, Djuric P M. Gaussian sum particle filtering [ J ]. IEEE Transactions on Signal Processing, 2003, 51 (10) : 2602 - 2612.
  • 6Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature [ J ]. Proceedings of the IEEE,2007, 95 (5) : 953 - 977.
  • 7Li X R, Jilkov V P. Survey of maneuvering target tracking[ J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (4) : 1255 - 1320.
  • 8Bilik I, Tabrikian J. MMSE-based fihering in presence of non- Gaussian system and measurement noise[ J 1. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46 ( 3 ) : 1153 - 1169.
  • 9Perakopf F, Bouchaffra D. Genetic-based em algorithm for learning Gaussian mixture mod,~ls [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 ( 8 ) : 1344 - 1348.
  • 10MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al. Interacting Multiple Model Methods in Target Tracking: A Survey [ J]. IEEE Trans. on Aerospace and Electron- ic Systems, 1998,34 ( 1 ) : 103 -122.

引证文献8

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部