期刊文献+

高光谱图像融合最佳波段选择方法 被引量:20

Band Selection of Optimal for Hyperspectral Image Fusion
下载PDF
导出
摘要 针对高光谱图像高数据维给图像处理带来的困难和影响,本文构造了高光谱图像融合的最佳波段选择新模型—联合偏度-峰度指数(Joint Skewness-Kurtosis figure,JSKF)模型,利用JSKF指数进行自适应子空间的分解和波段选择,降低高光谱数据维数;并将选择出的最佳波段组合进行了融合,实验结果表明,该方法所选择的波段信息差异较大、互补特征明显,融合后图像包含的信息量丰富,效果优于传统的自适应波段选择方法和主成分分析累计贡献率方法。 A novel band selection model called joint skewness-kurtosis figure(JSKF) is proposed to solve problem of high dimensions of hyperspectral images.The whole data base is automatically partitioned into different sub-spaces by the sign and value of JSKF.Then the optimal bands for image fusion are selected in each sub-space according to the absolute value of JSKF.This band selection algorithm is applied in OMIS hyperspectral images and the selected bands are fused by a common image fusion method.The experimental results show that the bands selected by JSKF contain richer complementary information,especially the characteristics of small targets and textures,than those selected by the conventional adaptive band selection method and cumulative contribution rate method based on principal component analysis(PCA),and also provide improved fusion results.
出处 《宇航学报》 EI CAS CSCD 北大核心 2011年第2期374-379,共6页 Journal of Astronautics
基金 国家自然科学基金(60802084) 教育部博士点新教师基金(200806991084)
关键词 高光谱图像 波段选择 融合 偏度 峰度 Hyperspectral images Band selection Fusion Skewness Kurtosis
  • 相关文献

参考文献11

  • 1周付根,史洁玉,王兆仲,刘志芳.基于光谱特性的高光谱图像压缩方案[J].宇航学报,2006,27(5):1023-1028. 被引量:6
  • 2罗琴,田铮.高光谱图像无监督分类的非线性特征提取器[J].宇航学报,2007,28(5):1273-1277. 被引量:4
  • 3Greco M, Acito N, Corsini G, et al. Band selection for spectral signature based target detection in hyperspectral data[ C ]. IEEE International Conference on Geoscience and Remote Sensing Symposium, Dever, Colorado,July. 31 -Aug. 4, 2006.
  • 4Qian D. Band selection and its impact on target detection and classification in hyperspectral image analysis [ C ]. IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Greenbelt, Maryland, October 27 - 28, 2003.
  • 5Balasubramanian G, Shettigara V K, Angeli S, et al. Band selection using support vector machines for improving target detection in hyperspectral images[ C ]. 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, Adelaide, Australia, December 3 -5, 2007.
  • 6赵选民,徐伟,师义民.数理统计[M].北京:科学出版社,2003.
  • 7刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 8杨诸胜,郭雷,罗欣,胡新韬.一种基于主成分分析的高光谱图像波段选择算法[J].微电子学与计算机,2006,23(12):72-74. 被引量:21
  • 9赵春晖,陈万海,杨雷.高光谱遥感图像最优波段选择方法的研究进展与分析[J].黑龙江大学自然科学学报,2007,24(5):592-602. 被引量:37
  • 10Chiang S S, Chang C I, Ginsberg I W. Unsupervised target detection in hyperspectral images using projection pursuit [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39 (7) : 1380-1391.

二级参考文献60

共引文献147

同被引文献144

引证文献20

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部