期刊文献+

并行代数多重网格粗化算法的优化

Optimization of Grid-Coarsening Algorithm for Parallel Algebraic Multigrid Method
原文传递
导出
摘要 近年来,随着日常生活等实际应用领域中大规模稀疏矩阵求解问题的推动,代数多重网格(AMG)算法及其并行化的研究成为了数值计算领域的热点。本文在原始AMG算法和MPRS算法的基础上,对现有的并行AMG算法提出了一种优化的动态阈值算法(DVRS)。在Visual Studio 2008环境下,数值计算实验结果表明,新算法适用于更广泛的领域,与原有的并行AMG算法相比,改善了AMG并行计算的可扩展性。 In recent years, the need for solving large-scale sparse matrix in the practical application domain of life has sparked great interest in the research of algebraic multigrid algorithm(AMG) and its parallelization. Based on initial AMG method and MPRS algorithm, the authors propose an optimized DVRS algorithm for existing parallel AMG algorithm. Under the environment of Visual Studio 2008, the experiments and experimental results show that the new method is suitable for more widespread domain and improves the algorithmic scalability of the parallel AMG computing remarkably.
出处 《电子技术(上海)》 2011年第1期18-21,共4页 Electronic Technology
关键词 代数多重网格(AMG)算法 并行计算 二维水波 algebraic multigrid (AMG) algorithm parallel computing two-dimensional wave
  • 引文网络
  • 相关文献

参考文献4

  • 1Henson V E,Yang U M.BoomerAMG:a parallel algebraic multigrid solver and pre-conditioner[J].Applied Numerical Mathematics,2002, 41 (1) : 155-177.
  • 2Cleary A J,Falgout,R D,Henson V E,et al.Coarse-gird selection for parallel algebraic multigrid[C]//Proceedings of the "Fifth International Symposium on Solving Irregularly Structured Problems in Parallel",Lecture Notes in Computer Science 1457,Springer-Verlag,New York,1998 : 104-115.
  • 3徐小文,莫则尧.一种新的并行代数多重网格粗化算法[J].计算数学,2005,27(3):325-336. 被引量:7
  • 4Stuben K,Algebraic multigrid (AMG):An introduction with Applications,GMD Report 70[R/OL].Nov,(1990), also available as an appendix in the book "Multrgrid" by U.Trottenberg,C.W.Oosterlee,A.Schuller, Academic Press, (2001 ),413-532. http://www, scai. fraunho fer.de/fileadmin/download/samg/ paper/AMG Introduction.pdf.

二级参考文献17

  • 1Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E., Coarse-grid Selection for parallel Algebraic Multigrid, in Proceedings of the “fifth international symposium on solvingirregularly structured problems in parallel”, Lecture Notes in Computer Science 1457,Springer-Verlag, New York, (1998), 104-115.
  • 2Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E., Manteuffel, T.A., McCormick, S.F.,Miranda, G.N., Ruge, J.W., Robustness and Scalability of Algebraic Multigrid, SIAM J.Sci. Comp., 21:5(2000), 1886-1908.
  • 3Henson, V.E., Yang, U.M., BoomerAMG: a Parallel Algebraic Multigrid Solver and Preconditioner, Applied Numerical Mathematics, 41(2002), 155-177.
  • 4hypre: High performance preconditioners, http://www.llnl.gov/CASC/hypre.
  • 5Jones, M.T., Plassman, P.E., A Parallel Graph Coloring Heuristic, SIAM, J. Sci Comp..14 (1993), 654-669.
  • 6Jones, J.E. and McCormick, S.F., Parallel multigrid methods, In Keyes,Sameh and Venkatakrishnan,editors, Parallel Numerical Algorithms, 203-224. Kluwer Academic, (1997).
  • 7Krechel, A., Stuben, K., Parallel Algebraic Multigrid Based on Subdomain Blocking, GMD Report 71, Nov (1999).
  • 8Luby, M., A simple parallel algorithm for the maximal independent set problem, SIAM J.Sci. Comp., 15 (1986), 1036-1053.
  • 9莫则尧.[D].长沙:国防科技大学计算机系,(1997).
  • 10Stuben, K., Algebraic Multigrid(AMG): An Introduction with Applications, GMD Report 70, Nov, (1999), also available as an appendix in the book “Multigrid” by U.Trottenberg,C.W.Oosterlee, A.Schuller, Academic Press, (2001), 413-532.

共引文献6

;
使用帮助 返回顶部