期刊文献+

基于SURF特征的篮球特征匹配

Objects Marking Based on SURF Features in Sports Video
下载PDF
导出
摘要 体育视频中目标标识在机器视觉等领域有广泛的应用而基于传统特征的目标标识运算量大、鲁棒性差,无法满足视频标注的实时性的要求。本文基于SURF特征对篮球视频中的目标进行标识,首先利用SURF算法获取特征点,然后利用最近邻匹配法找到匹配点对,最后利用所求值得到标识后的图像。实验表明该算法能满足准确性和实时性的要求,在目标出现一定的旋转状况下仍能实现准确的标识目标。 Marking the object in sports video is widely used in machine vision, but, marking based on traditional features is heavy in computation and poor in robustness, such that it can not fulfill real-time demand in video annotations .This paper mark the object in basketball video basing on SURF features. In the first place, the SURF algorithm is used to get the feature descriptor, and then nearest neighbor matching method is used to find the matching points, finally obtain the marked figure. The results of experiment show that this algorithm can meet the requirements of accuracy and real-time. Though the object is rotated, it can be marked by the new algorithm.
作者 张海鹏
出处 《科技信息》 2011年第1期I0062-I0063,共2页 Science & Technology Information
关键词 SURF 特征提取 目标标识 SURF Feature extraction Object marking
  • 相关文献

参考文献7

  • 1LOWE DG.Object recognition from local scale-invariant features [C]// International Conference Computer Vision, Corfu, Greece Sept. 1999:1150-1157.
  • 2LOWE D G.Distinctive image features from scale-invariant Keypoints [J]. International Journal of Computer Vision, 2004,60(2) : 91-110.
  • 3KEY,SUKTHANKAR R.PCA-SIFT:a more distinctive representation for local image descriptors [C]//Proceedings Conference Computer Vision and Pattern Recognition, 2004 : 511-517.
  • 4GLOH K. Mikolajczyk and C. Schmid, "A performance evaluation of local descriptors," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no. 10:1615-1630, 2005.
  • 5BAY H,TUVTELLARS T,GOOL L Van.SURF:speeded up robust features[C]// Proceedings of the European Conference on Computer Vision,2006:404-417.
  • 6BROWN M,LOWE D.Invariant features from interest point groups[C]//BMVC, 2002:1-10.
  • 7张锐娟,张建奇,杨翠.基于SURF的图像配准方法研究[J].红外与激光工程,2009,38(1):160-165. 被引量:120

二级参考文献20

  • 1牛力丕,毛士艺,陈炜.基于Hausdorff距离的图像配准研究[J].电子与信息学报,2007,29(1):35-38. 被引量:21
  • 2王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 3李寒,牛纪桢,郭禾.基于特征点的全自动无缝图像拼接方法[J].计算机工程与设计,2007,28(9):2083-2085. 被引量:52
  • 4ZITOVA B, FLUSSER J. Image registration methods:a survey [J].Image and Vision Computing ,2003,21:977-1000.
  • 5HARRIS C G, STEPHENS M J. A combined comer and edge detector [C]//Processings Fourth Alvey Vision Conference, Manchester, 1988:147-151.
  • 6SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing[J]. International Journal of Computer Vision, 1997,23(1): 45-78.
  • 7LOWE D G.Object recognition from local scale-invariant features [C]// International Conferenceon Computer Vision, Corfu, Greece Sept, 1999 : 1150-1157.
  • 8MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[J].International Journal of Computer Vision, 2004,60(1):63-86.
  • 9LOWED G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004.60(2), 91-110.
  • 10BICEGO M , LAGORIO A, GROSSO E,et al. On the use of SIFT features for face authentication [C]//2006 IEEE Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop,2006:1-7.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部