期刊文献+

蝶呤型钼辅因子生物合成、运输及组装——潜在的药物靶标 被引量:1

Biosynthesis,Transferer and Assembly of Pterin-based Molybdenum Cofactors: Potential Drug Targets
下载PDF
导出
摘要 钼辅因子作为氧化还原反应中的重要分子,参与硫、氮、碳的氧化还原代谢.钼辅因子主要分为两类:以铁硫簇为基础的铁钼辅因子和以亚钼蝶呤为基础的钼辅因子.钼-二-亚钼蝶呤-鸟苷二核苷钼辅因子(Mo-bis-MGD)是蝶呤型钼辅因子的重要成员之一,是硝酸盐还原酶的重要辅因子.膜结合硝酸盐还原酶介导的硝酸盐还原为细菌提供了氮源和能源,与分枝杆菌的持留性感染相关.此外,膜结合硝酸盐还原酶能显著增加卡介苗在免疫缺陷鼠中的毒性.人与细菌中蝶呤型钼辅因子生物合成、运输和组装的差异提示,Mo-bis-MGD型钼辅因子的生物合成途径很可能作为新型药物靶标,有益于抗病原菌,尤其有利于抗多重耐药结核分枝杆菌新药的开发研究. As a crucial molecule participating in catalyzing reduction-oxidation(redox) reactions,molybdenum cofactors involve in the redox metabolism of sulphur,nitrogen and carbon.Molybdenum cofactors are generally divided into two groups: the iron-sulphur-cluster-based iron-molybdenum cofactor(FeMo-co) and the pterin-based molybdenum cofactor(Moco).Mo-bis-molybdopterin guanine dinucleotide(Mo-bis-MGD) is one member of Moco,which is important cofactor of nitrate reductase.Membrane-bound nitrate reductase mediating the reduction of nitrate provides bacteria with energy and nitrogen source,which is related with latent tuberculosis infection.Moreover,membrane-bound nitrate reductase contributes significantly to the virulence of Mycobacterium bovis BCG in immunodeficient mice.The difference of biosynthesis,transference and assembly of Moco between human and bacteria indicates that the steps of biosyntheis of Mo-bis-MGD might be developed as novel drug targets to screen novel antibiotics against pathogens,particularly the(multi)drug-resistant Mycobcterium tuberculosis.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2011年第2期135-141,共7页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家重要传染病十一五科技重大专项(No.2008ZX10003-006 No.2008ZX10003-001)~~
关键词 钼辅因子 硝酸盐还原酶 分枝杆菌 molybdenum cofactors nitrate reductase Mycobacteria
  • 相关文献

参考文献40

  • 1Schwarz G. Molybdenum cofactor biosynthesis and deficiency [ J]. Cell Mol Life Sci, 2005, 62 (23) :2792-2810.
  • 2Schwarz G, Mendel R R, Ribbe M W. Molybdenum cofactors, enzymes and pathways[ J]. Nature, 2009, 460(7257) :839-847.
  • 3Hille R. The mononuelear molybdenum enzymes [ J ]. Chem Rev, 1996, 96(7) :2757-2816.
  • 4Hille R. Molybdenum and tungsten in biology [ J ]. Trends Biochem Sci, 2002, 27 (7) :360-367.
  • 5Weber I, Fritz C, Ruttkowski S, et al. Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice [ J ]. Mol Microbiol, 2000, 35 ( 5 ) : 1017-1025.
  • 6Schwarz G,Mendel R R. Molybdenum cofactor biosynthesis and molybdenum enzymes [ J ]. Annu Rev Plant Biol, 2006, 57: 623 -647.
  • 7Reiss J, Johnson J L. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH [ J ]. Hum Mutat, 2003, 21 ( 6 ) : 569-576.
  • 8Stallmeyer B, Schwarz G, SchuIze J, et al. The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells [J]. Proc Natl Acad Sci USA, 1999, 96(4) :1333-1338.
  • 9Wuebbens M M, Liu M T, Rajagopalan K, et al. Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC [ J ]. Structure, 2000, 8(7) :709-718.
  • 10Hanzelmann P, Schwarz G, Mendel R R. Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis[ J]. J Biol Chem, 2002, 277 (21) :18303-18312.

同被引文献14

  • 1Global tuberculosis control: WHO Report 2010 [ report ] http :// www. who. int/tb/publications/global_report/archive/en/index. html.
  • 2Ahmad S. New approaches in the diagnosis and treatment of latent tuberculosis infection[ J]. Respir Res, 2010, 11 : 169.
  • 3Brennan PJ, Crick DC. The cell-wall core of Mycobacterium tuberculosis in the context of drug discovery[ J ]. Curr Top Med Chem, 2007, 7(5) : 475-488.
  • 4Starks AM, Gumusboga A, Plikaytis BB, et al. Mutations at embB codon 306 are an important molecular indicator ofethambutol resistance in Mycobacterium tuberculosis [ J ]. Antimicrob Agents Chemother, 2009, 53 ( 3 ) : 1061-1066.
  • 5Belanger AE, Besra GS, Ford ME, et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved incell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol[ J]. Proc Natl Acad Sci U S A, 1996 ,93(21) : 11919-11924.
  • 6Escuyer VE, Lety MA, Torrelles JB, et al. The role of the embA and embB gene products in the biosynthesis of the terminalhexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan[ J ]. J Biol Chem, 2001,276 (52) : 48854- 48862.
  • 7Shi L, Berg S, Lee A, et al. The carboxy terminus of EmbC from Mycobacterium smegmatis mediates chain length extension of thearabinan in lipoarabinomannan [ J]. J Biol Chem, 2006, 281 (28) : 19512-19526.
  • 8Zhang N, Torrelles JB, McNeil MR, et al. The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan andarabinogalactan via an N-termlnal recognition region and a Cterminal synthetic region[ J]. Mol Microbiol,2003,50( 1 ) : 69- 76.
  • 9Daffe M, Brennan PJ, McNeil M. Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis asrevealed through characterization of oligoglyeosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses [J]. J Biol Chem, 1990 ,265(12) : 6734-6743.
  • 10McNeil MR, Robuck KG, Hatter M, et al. Enzymatic evidence for the presence of a critical terminal hexa-arabinoside in the cell wails of Mycobacterium tuberculosis [ J ]. Glycobiology, 1994,4 (2) : 165-173.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部