期刊文献+

统计参数图和多尺度特征提取用于事件相关fMRI分析的比较 被引量:1

Comparison of SPM2 and MFE in Event-related fMRI Processing
下载PDF
导出
摘要 研究统计参数图(SPM2)和多尺度特征提取(MFE)两种方法处理3个被试的视觉组块型和视觉事件相关型fMRI试验数据的分析性能。当显著性水平选为P=0.001且基于高斯随机场理论修正后,SPM2处理3个被试视觉组块型数据检测出的视觉区激活体素个数仅为MFE检测到的48.9%、43.4%和39.7%,处理事件相关型数据检测到的激活体素个数仅为MFE检测到的49.2%、6.2%和14.7%。特别地,MFE在处理事件相关型fMRI数据时显示出良好的特异性。因此,MFE较之于SPM2在处理事件相关型数据方面有非常明显的优势,是一种特别值得推荐的分析事件相关型fMRI数据的方法。
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2011年第1期135-139,共5页 Chinese Journal of Biomedical Engineering
基金 河南省教育厅自然科学基金(2007310024 2008A180040) 周口师院博士科研基金(2006SRFD002)
关键词 功能磁共振成像 事件相关设计 多尺度分析 小波变换 fMRI event-related paradigm multi-scale analysis wavelet transform
  • 相关文献

参考文献9

  • 1Ogawa S,Lee TM,Kay AR,et al.Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J].Proc Natl Acad Sci,USA,1990,87(24):9868-9872.
  • 2Hossien-Zadeh GA,Soltanian-Zadeh H,Ardekani A.Multiresolution fMRI activation detection using translation invariant wavelet transform and statistical analysis based on resampling[J].IEEE Trans Med Imaging,2003,22(3):302-314.
  • 3Tanabe J,Miller D,Tregellas J,et al.Comparison of detrending method for optimal fMRI preprocessing[J].NeuroImage,2002,15(4):902-907.
  • 4Friston KJ,Holmes AP,Worsley KJ,et al.Statistical parametric maps in functional imaging:a general linear approach[J].Hum Brain Mapping,1995,2(4):189-210.
  • 5Bullmore E,Fadili J,Maxim V,et al.Wavelets and functional magnetic resonance imaging of the human brain[J].NeuroImage,2004,23(1):S234-8249.
  • 6侯建华,熊承义,何翔,陈亚光.基于小波统计模型的医学超声图像去噪方法研究[J].中国生物医学工程学报,2009,28(1):31-36. 被引量:9
  • 7孙炜,王耀南.基于模糊小波神经网络的磁共振图像分割方法[J].中国生物医学工程学报,2006,25(3):267-270. 被引量:4
  • 8支联合,李玉晓,赵书俊,单保慈.基于离散小波变换的fMRI数据特征提取[J].中国医学影像技术,2010,26(6):1151-1154. 被引量:7
  • 9Donoho DL,Johnstone IM.Adapting to unknown smoothness via wavelet shrinkage[J].J Am Stat Assoc,1995,90(432):1200-1224.

二级参考文献28

共引文献17

同被引文献12

  • 1KOCH W, TEIPEL S, MUELLER S, et al. Diagnostic pow- er of default mode network resting state fMRI in the detec- tion of Alzheimer' s disease [ J ]. Neurobiology of Aging, 2012, 33(3): 466-478.
  • 2YOON J H, NGUYEN D V, MCVAY L M, et al. Automa- ted classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia [ J ]. Schizophrenia Research, 2012, 135(1) : 28-33.
  • 3PEREIRA F, MITCHELL T, BOTVINICK M. Machine learning classifiers and fMRI: a tutorial overview[ J]. Neu- roimage, 2009, 45(1): S199-$209.
  • 4SHEN H, WANG L, LIU Y, et al. Discriminative analysis of resting-state functional connectivity patterns of schizophre- nia using low dimensional embedding of fMRI [ J ]. Neuroim- age, 2010, 49(4): 3110-3121.
  • 5LEE S, ZELAYA F, SAMARASINGHE Y, et al. Data-driv- en fMRI group classification using connected components and Gaussian process classifiers [ C ]//2011 IEEE Interna- tional Conference on Acoustics, Speech and Signal Process-ing (ICASSP). Prague, Czech Republic, 2011: 717-720.
  • 6YU Q, SUI J, LIU J, et al. Disrupted correlation between low frequency power and connectivity strength of resting state brain networks in schizophrenia [ J ]. Schizophrenia Research, 2013, 143(1) : 165-171.
  • 7TZOURIO-MAZOYER N, LANDEAU B, PAPATHANAS- SIOU D, et al. Automated anatomical labeling of activa- tions in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[ J]. Neuroimage,2002, 15(1) : 273-289.
  • 8RUBINOV M, SPORNS O. Weight-conserving character- ization of complex functional brain networks [ J ]. Neuroim- age, 2011, 56(4): 2068-2079.
  • 9BRAUN U, PLICHTA M M, ESSLINGER C, et al. Test- retest reliability of resting-state connectivity network char- acteristics using fiVIRI and graph theoretical measures [ J ]. Neuroimage, 2012, 59(2): 1404-1412.
  • 10支联合,李玉晓,赵书俊,单保慈.基于离散小波变换的fMRI数据特征提取[J].中国医学影像技术,2010,26(6):1151-1154. 被引量:7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部