期刊文献+

基于GLCM和EM算法的纹理图像分割 被引量:6

Texture Segmentation based on Gray-Level Co-occurrence Matrix Features and EM Algorithm
原文传递
导出
摘要 基于纹理图像的特征,提出了基于灰度共生矩阵(GLCM)和快速极大似然估计(EM)算法相结合的纹理图像分割新算法,为了获得较好的纹理图像分割结果该算法采用灰度共生矩阵的三个常用特征并在四个方向上求平均,从而克服了方向的影响。采用欧式距离度量函数求得两特征向量的距离。通过用改进EM算法对距离矩阵进行聚类,得到纹理图像的初始分割结果,最后用形态学的方法实现对纹理图像边界的精确定位。 This paper proposes a textures segmentation algorithm based on gray-Level co-occurrence matrix features and EM.Three texture features is computed,thus to gain better result.The average measurements of all four angles are usually used in calculating GLCM for reducing the influence of angle.The distance between two texture feature vectors are measure.To derive the initial segmentation result,distance matrix is used as the feature vector and the improved expectation maximization image segmentation is applied to achieving effective segmentation.Finally,by using the method of morphology,the accurate localization of region boundaries is realized.
出处 《通信技术》 2011年第1期48-49,52,共3页 Communications Technology
关键词 灰度共生矩阵 EM算法 纹理分割 距离函数 gray-Level co-occurrence matrix(GLCM) EM algorithm texture segmentation distance function
  • 相关文献

参考文献4

二级参考文献38

  • 1江杰,李杰,胡晓莉.自动指纹识别中的图像预处理算法研究[J].微计算机信息,2005,21(12X):169-171. 被引量:14
  • 2甘树坤,欧宗瑛,魏鸿磊.基于灰度特性的指纹图像分割算法[J].吉林化工学院学报,2006,23(1):68-71. 被引量:19
  • 3Clausi D, Jernigan E. Designing Gabor filters for optimal texture separability[J]. Pattern Recognition, 2000(33): 1835-1849.
  • 4付景广.指纹识别中若干关键算法的研究[D].中国优秀博硕士学位论文全文数据库,2003:18-25.
  • 5Navarre R, Tabernero A. Gaussian wavelet t, ransform: two alternative fast implementation for images, Multidimensional System and Signal Processing, 1991,2:421-436
  • 6Ding lihong, Xiao 1e, Zhu yuwen, Liu wanchun, Liu yang. Oabor filter based automatic textile defect detectien[C]. Proc.SDIE, 2002, 4875:789-795.
  • 7Eumar A jay, Pang grantham, Defect detection in textured materials using Gabor filters [J]. IEEE Transactions on Industry Application, 2002, 38(2): 425-440.
  • 8Teh W, Wilson ARM. The Role of Ultrasound in Breast Cancer Screening[J]. European Journal of Cancer, 1998,34(04): 449-450.
  • 9J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.
  • 10N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842.

共引文献228

同被引文献58

引证文献6

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部