期刊文献+

基于VMPSO-BP神经网络的话务量预测 被引量:4

Traffic Forecasting based on VMPSO-BP Neural Network Algorithm
原文传递
导出
摘要 为了更快速、准确地预测移动话务量,提出了速度变异的粒子群算法(VMPSO),并与BP算法相结合,形成速度变异的粒子群—BP(VMPSO-BP)神经网络算法,用以训练神经网络,从而优化了神经网络的参数,最后对移动话务量进行预测。与传统BP神经网络方法和PSO-BP神经网络方法相比较,并且通过实验数据的分析以及对预测结果地比较,速度变异的粒子群—神经网络预测方法精度更高,收敛速度更快,从而更好地实现了对移动话务量地预测。 For rapid and accurate forecast of the traffic,the Velocity Mutation Particle Swarm Optimization(VMPSO) algorithm is presented.It is combined with the back propagation algorithm,thus forming Velocity Mutation Particle Swarm Optimization and Back Propagation(VMPSO-BP) neural network algorithm for the training of neural network and the optimization of neural network parameters.Then the traffic of mobile company is forecasted by the model.The experimental results and also the analysis of experimental data and comparison of predicted results show that its forecast accuracy is more accurate and its speed is faster than that of the traditional BP neural network and the PSO-BP neural network.It is a better realization of mobile traffic forecast.
出处 《通信技术》 2011年第1期96-98,共3页 Communications Technology
关键词 话务量预测 速度变异的粒子群—BP神经网络算法 预测精度 Traffic forecast Velocity Mutation Particle Swarm Optimization and Back Propagation(VMPSO-BP) neural network algorithm forecast accuracy
  • 相关文献

参考文献7

二级参考文献48

共引文献151

同被引文献31

  • 1张栾英,李瑞欣,秦志明,谷俊杰.采用模拟退火算法的Elman网络及在热工过程建模中的应用[J].中国电机工程学报,2005,25(11):90-94. 被引量:16
  • 2肖健华,林健,刘晋.基于SVR的区域经济短期预测模型[J].系统仿真学报,2005,17(12):2849-2851. 被引量:10
  • 3祝志慧,孙云莲,季宇.基于EMD和SVM的短期负荷预测[J].高电压技术,2007,33(5):118-122. 被引量:42
  • 4刘杰,黄亚楼.基于BP神经网络的非线性网络流量预测[J].计算机应用,2007,27(7):1770-1772. 被引量:66
  • 5Kennedy J, Eberhart R. Particle swarm optimization[C]//Proc International Conference on Neural Networks, Perth, Aus tralia, 1995:1942-1948.
  • 6龚纯,王正林.精通MATI.AB最优化计算[M].北京:电子工业出版社,2010:283-285.
  • 7马瑞.人工神经网络原理[M].北京:机械工业出版社,2010.
  • 8Yu Guoqiang, Zhang Changshui. Switching ARIMA Model based Forecasting for Traffic Flow[J]. International Confer- ence on Acoustics Speech and Signal Processing, Montreal, CANADA, 2004(02): 429-432.
  • 9Jin-Tsong Jeng. Hybrid Approach of Selecting Hyper Pa- rameters of Support Vector Machine for Regression [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2006,36(3):699-709.
  • 10Wang Z.W., Durst G.L., Eberhan R.C.. Particle Swarm opti- mization and Neual Network Application for QSAR[C]. Proc .IEEE Int. Con. on ParaIlel and Distributed Processing Sym-Posium. New Mexico,2004.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部