期刊文献+

多模噪声背景下信号提取算法的研究 被引量:3

Study on Signal Extraction Algorithm in Multi-modal Hybrid Noise
原文传递
导出
摘要 信号检测是信号处理的一个重要的研究方向,以前的信号检测方法多数是基于在高斯噪声背景下进行讨论,对非高斯噪声研究比较少。非高斯噪声的干扰问题在通信过程中是经常出现的。背景噪声用多模(非高斯)噪声为模型,提出改进(最小均方误差牛顿)LMS Newton算法实现对多模背景噪声的抑制,并给出了多模噪声中信号的检测,达到对有用信号提取的目的。最后,进行了计算机模拟仿真,得出了结果。 Signal detection is one of the most important research topics in the signal process domain.The previous detection methods are mostly based on the Gaussian noise,and seldom on non-Gaussian noise.The disturbance of non-Gaussian noise is very common in communication process.Background noise is with multi-modal hybrid(non-Gaussian) noise as its model,thus the improved LMS Newton algorithm is proposed in order to control the multi-modal background noise,and thus acquire the useful signal.Finally,the computer simulation gives the corresponding results.
出处 《通信技术》 2011年第1期141-144,共4页 Communications Technology
基金 国家自然科学基金资助项目(批准号:60971130)
关键词 多模噪声 信号检测 LMSNewton算法 multi-modal noise signal detection improved LMS Newton algorithm
  • 相关文献

参考文献7

二级参考文献14

  • 1Kretschmer F F, Lewis Jr B L. An improved algorithm for adaptive processing [J]. IEEE Trans. on CAS, 1978-01, AES-14 (1): 172-177.
  • 2Glentis George Othon, Berberidis Kostas, Theodoridis Sergios. A unified view efficient least squares adaptive algorithms for FIR transversal filtering [J]. IEEE signal processing magazine, 1999-07, 12-41.
  • 3Haykin S. Adaptive Filtering Theory [M]. third edition. BEIJING: Publishing House of Electronics Industry, 1998, 565-566.
  • 4Alexander S T. Adaptive signal processing: theory and application [M]. springer-Verlay, 1986.
  • 5何建华,华中理工大学学报,1997年,25卷,7期
  • 6杨宗凯,模式识别与神经网络,1992年
  • 7Чердынцев В А,Далабаев С(山拜·达拉拜).ПриемСигналовнаФонепомех[J].Белорусскийгосуда рственныйуниверситетинформатикиирадиозлектр оники,1995.
  • 8Далабаев С(山拜·达拉拜).Методы Зашиты от Помехв Каналах Радиосеязи [J].Известия Белорусской Инженерной Академии,1997,1(3):67-72.
  • 9Lee Te - Won, Lewicki M S, Sejnowski T J. ICA Mixture Models for Unsupervised Classification of Non - Gaussian Classes & Automatic Context Switching in Blind Signal Separation[ J ]. IEEE Trans on PA&MI, 2000,22 ( 10 ) : 1078-1089.
  • 10Рощупкин А В.Матвматическое Моделированиеи СравнителъныйАнализХарактеристикАмплитудныхП одавителейНегауссовскихПомех[J]. EMCS -93:78-80.

共引文献114

同被引文献23

  • 1刘勃,周荷琴,魏铭旭.基于颜色和运动信息的夜间车辆检测方法[J].中国图象图形学报(A辑),2005,10(2):187-191. 被引量:32
  • 2孙立光.基于车灯追踪的夜间交通信息采集方法[J].ITS通讯,2006,8(2):19-23. 被引量:3
  • 3李会方,渠长红,朱波,牛欣伟.基于小波的彩色图像半盲水印算法[J].信息安全与通信保密,2007,29(3):92-93. 被引量:4
  • 4李振宏.基于矩阵编码的彩色图像信息隐藏研究[J].信息安全与通信保密,2007,29(5):139-140. 被引量:1
  • 5加卢什金著 阎平凡译.神经网络理论[M].北京:清华大学出版社,2002..
  • 6葛哲学,沙威.小波包分析理论与MATLAB R2007[M].北京: 电子工业出版社,2007.
  • 7SUN gehang, BEBIS G, MILLER R. On-Road Vehicle Detection: a Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(05):694-711.
  • 8GAO Lei, LI Chao, FANG Ting, et al. Vehicle Detection Based on Color and Edge Information[C]//LNCS. [s.I.]:ICIAR, 2008:I42-150.
  • 9LENG Y, WAN T, GUO Y, et Processing based on Resonance[J]. Mechanical Processing, 2 WANG Y, JIANG based on the al. Engineering Signal Bistable Stochastic Systems and Signal 007(21):138-150.
  • 10C. ISAR Imaging of Maneuvering Target L-class of Fourth-order Complex-lagPWVD[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(03) :1518-1527.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部