期刊文献+

C_4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective 被引量:7

C_4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective
原文传递
导出
摘要 The main feedstocks for bioethanol are sugarcane (Saccharum offic- inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall. The main feedstocks for bioethanol are sugarcane (Saccharum offic- inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2011年第2期120-135,共16页 植物学报(英文版)
基金 supported by the Australian Research Council (ARC) though ARC-linkage project LP0883808
  • 相关文献

参考文献1

同被引文献32

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部