期刊文献+

Constructing processing map of Ti40 alloy using artificial neural network 被引量:4

应用人工神经网络构造Ti40合金加工图(英文)
下载PDF
导出
摘要 Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations. 以Gleeble-1500热模拟试验机获得的Ti40钛合金压缩试验数据为基础,应用人工神经网络对数据进行训练和预测,建立该合金的高温流动应力与应变、应变速率和温度对应关系的预测模型,其中,应变、应变速率(对数形式)和变形温度作为模型的输入参数,流动应力作为模型的输出参数。结果发现,运用BP反向传播算法进行训练的神经网络模型具有良好的预测功能,其预测值与实验测量值基本吻合。同时,采用神经网络模型预测的数据构造Ti40合金的加工图,其安全区和失稳区的范围与实测数据获得的加工图基本相符,并对各自区域的相应组织状态进行金相观察。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期159-165,共7页 中国有色金属学报(英文版)
基金 Project(2007CB613807)supported by the National Basic Research Program of China Project(NCET-07-0696)supported by the New Century Excellent Talents in University,China Project(35-TP-2009)supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
关键词 Ti40 alloy processing map artificial neural network Ti40合金 加工图 人工神经网络
  • 相关文献

参考文献1

  • 1Y. V. R. K. Prasad,H. L. Gegel,S. M. Doraivelu,J. C. Malas,J. T. Morgan,K. A. Lark,D. R. Barker. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J] 1984,Metallurgical Transactions A(10):1883~1892

同被引文献29

  • 1朱玉荣,吕建新,曾宪,刘正国.基于RBF神经网络的农用柴油机故障诊断研究[J].农机化研究,2012,34(5):212-215. 被引量:3
  • 2黄福祥.涡轮盘用变形高温合金在俄国的发展[J].航空材料学报,1993,13(3):49-56. 被引量:10
  • 3马向平,李春燕,骆清国,王宪成,张志远.一种发动机万有特性曲面拟合的新方法[J].装甲兵工程学院学报,2006,20(1):52-54. 被引量:8
  • 4邓小虎,张立文,何燕,裴继斌,卢愈.应变速率对金属动态再结晶影响的数值模拟[J].塑性工程学报,2007,14(2):24-29. 被引量:18
  • 5Sellars C.M;Tegart W.J.M.On the mechanism of hot deformation,1966(09).
  • 6Lee B H,Reddy N S,Yeom J T, et al.Flow softening behavior during high temperature deformation of AZ31Mg alloy. Journal of Mater Processing Technology . 2007
  • 7Luo Jiao,Li Miao quan,Hua Yiqu,et al.Modeling of constitutive relationships and microstructural variables of Ti-6.62Al-5.14Sn-1.82Zr alloy during high temperature deformation. Materials Characterization . 2008
  • 8Sumantra M,Sivaprasad P V,Venugopal S,et al.Artificialneural network modeling to evaluate and predict the deforma-tion behavior of stainless steel type AISI 304L during hot tor-sion. Applied Soft Computing . 2009
  • 9KAPOOR R,PAL D,CHAKRAVARTTY J K.Use of artificial neural networks to predict the deformation behavior of Zr-2.5Nb-0.5Cu. Journal of Materials Processing Technology . 2005
  • 10Y Sun,W D Zeng,Y Q Zhao,et al.Development of con-stitutive relationship model of Ti600alloy using artifi-cial neural network. Computational Materials Sci-ence . 2010

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部