期刊文献+

一种结构化Web文档的联合聚类算法 被引量:1

A co-clustering algorithm based on structured Web document
下载PDF
导出
摘要 为了对网上多媒体信息进行有效检索和过滤,提出一种基于文本和图片相似性融合的联合聚类算法。首先通过相似性计算得到文本相似性和图片相似性,然后,将所得文本相似性矩阵和图片相似性矩阵进行水平拼接融合,经奇异值分解后,进行k-means联合聚类,使得聚类后的结果融合文本信息和图片信息。研究结果表明:与单一图像联合聚类方法相比,采用联合聚类算法所得每一簇的F-Measure值都有明显提高,与单一文本联合聚类在第1,2,3和7簇的F-Measure值也有所提高。 A similarity fusion algorithm about the text and image co-clustering of multimedia structured documents was given in order to perform multimedia retrieval and filter efficiently.This method fuses text similarity matrix and image similarity matrix to make a fusion similarity matrix and then it is co-clustered with k-means algorithm after eigenvector decomposition.This algorithm was tested on the task of multimedia structured documents which had two information sources,i.e.,text and image.The results show that the F-Measure value in all clusters obtained by the co-clustering algorithm based on structured Web document are larger than those obtained by a flat image co-clustering and the F-Measure value increases in the first,second,third,seventh cluster compared to those obtained by flat text co-clustering.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期1871-1876,共6页 Journal of Central South University:Science and Technology
基金 湖南省教育厅项目(09c647)
关键词 联合聚类 相似性融合 结构化文档 co-clustering similarity fusion structured document
  • 相关文献

参考文献15

  • 1ZHANG Yan-chun,XU Guan-dong.Using Web clustering Web communities mining and analysis[C]//Web Intelligence and Intelligent Agent Technology.Sydney,2008:78-85.
  • 2Fakouri R,Zamani B,Fathy M.Region-based image clustering and retrieval using fuzzy similarity and relevance feedback[C]//2008 International Conference on Electrical Engineering.Lahore,2008:343-347.
  • 3刘远超,王晓龙,刘秉权,钟彬彬.信息检索中的聚类分析技术[J].电子与信息学报,2006,28(4):606-609. 被引量:9
  • 4Dhillon I S,Modha D S.Concept decompositions for large sparse text data using clustering[J].Machine Learning,2001,42(1):143-175.
  • 5刘康苗,仇光,卜佳俊,陈纯,周纯.基于视觉和语义融合特征的阶段式图像聚类[J].浙江大学学报(工学版),2008,42(12):2043-2048. 被引量:4
  • 6Djouak A,Maaref H.Two levels similarity modelling:A co-clustering approach for image classification[C]//2009 6th International Multi-Conference on System,Signals and Devices.Djerba,2009:803-807.
  • 7Dhillon I S.Co-clustering documents and words using bipartite spectral graph partitioning[C]//Proc of the 7th ACM SIGKDD Int Conf on Knowledge Discovery and Data mining.New York,2001:269-274.
  • 8Giannakidou E,Koutsonikola V,Vakali A,et al.Co-clustering tags and social data sources[C]//The Ninth International Conference on Web-Age Information Management.Zhangjiajie,2008:317-324.
  • 9Chen Z,Wenyin L,Zhang F,et al.Web mining for Web image retrieval[J].Journal of the American Society for Information Science and Technology,2001,52:831-839.
  • 10Blei D M,Jordan M I.Modeling annotated data[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Toronto,2003:127-134.

二级参考文献27

  • 1JING Feng, WANG Chuang-hu, YAO Yu-huan, et al. IGroup: Web image search results clustering [C]//Proceedings of the 14th annual ACM International Conference on Multimedia. New York: ACM,2006:377 - 384.
  • 2HEARST M A,PEDERSEN J O. Reexamining the cluster hypothesis: scatter/gather on retrieval results [C] // Proceedings of the 19th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1996 : 76 - 84.
  • 3ZAMIR O, ETZIONI O. Web document clustering: A feasibility demonstration [ C ] // Proceedings of the 21st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1998: 46- 54.
  • 4LIU Hao, XIE Xing, TANG Xiao-ou, et al. Effective browsing of Web image search results [C]// Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval. New York: ACM,2004:84 - 90.
  • 5LUO Bo, WANG Xiao-gang, TANG Xiao-ou. A world wide Web based image search engine using text and image content features [C] // Proeeedings of IS&T/SPIE Electronic Imaging 2003. Santa Clara, California, USA:SPIE,2003 : 123 - 130.
  • 6GAO Bin,LIU Tie-yan,QIN Tao,et al. Web image clustering by consistent utilization of visual features and surrounding texts [C]//Proceedings of the 13th annual ACM International Conference on Multimedia. New York: ACM,2005:112 - 121.
  • 7WANG Xin-jing, MA Wei-ying, ZHANG Lei,et al. Iteratively clustering Web images based on link and attribute reinforcements [C] /// Proceedings of the 13th annual ACM International Conference on Multimedia. New York: ACM,2005..122 - 131.
  • 8CAI Deng, HE Xiao-fei, L1 Zhi-wei, et al. Hierarchical clustering of WWW image search results using visual, textual and link analysis [C]// Proceedings of the 12th annual ACM International Conference on Multimedia. New York: ACM,2004 : 952 - 959.
  • 9CHEN Yi-xin, WANG J Z, KROVETZ R. Content- based image retrieval by clustering [C] // Proceedings of the 5th ACM SIGMM International Workshop on Multi- media Information Retrieval. New York: ACM, 2003: 193 - 200.
  • 10HARTIGAN J A,WONG M A. A K-means clustering algorithm EJ]. Applied Statistics, 1979,28:100 - 108.

共引文献36

同被引文献15

  • 1XU Xusong CAO Yanlong YANG Jiangxin.CONDITION MONITOR OF DEEP-HOLE DRILLING BASED ON MULTI-SENSOR INFORMATION FUSION[J].Chinese Journal of Mechanical Engineering,2006,19(1):140-142. 被引量:7
  • 2徐新华,谢永红.增量聚类综述及增量DBSCAN聚类算法研究[J].华北航天工业学院学报,2006,16(2):15-17. 被引量:5
  • 3HU Ruifei YIN Guofu TAN Ying CAI Peng.COOPERATIVE CLUSTERING BASED ON GRID AND DENSITY[J].Chinese Journal of Mechanical Engineering,2006,19(4):544-547. 被引量:4
  • 4Kim D W,Lee Y S,Park M S.Tool life improvement by peckdrilling and thrust force monitoring during deep-micro-holedrilling of steel[J].International Journal of Machine Tools&Manufacture,2009,49(3/4):246-255.
  • 5Rivero A,López de Lacalle L N,Luz Penalva M.Tool weardetection in dry high-speed milling based upon the analysis ofmachine internal signals[J].Mechatronics,2008,18(10):627-633.
  • 6ZHOU You-hang,ZHANG Jian-xun.Analysis of Relationshipbetween batch drilling process and Multi-SensorSynchronization Signals[C]//Proceedings of InternationalConference on Measuring Technology and MechatronicsAutomation,2009:127-130.
  • 7Singh R,Khamba J S.Comparison of slurry effect on machiningcharacteristics of titanium in ultrasonic drilling[J].Journal ofMaterials Processing Technology,2008,197(2):200-205.
  • 8Han J W,Kamber M.数据挖掘:概念与技术[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007:251-301.
  • 9Ester M,Kriegel H-P,Sander J,etc.Incremental Clustering forMining in a Data Warehousing Environment[C]//Proceedings of24th International Conference on Very Large Data Base.New York:USA,1998:323-333.
  • 10Ester M,Kriegel H P,Sander S,et al.A density-based algorithmfor discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference onKnowledge Discovery and Data Mining.Portland,USA,1996:226-231.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部