期刊文献+

基于BP网络的注塑成型模具硬态高速铣削力研究 被引量:4

Milling force of plastic mold parts in high speed hard milling based on BP neural network
下载PDF
导出
摘要 用AlTiN涂层硬质合金立铣刀对4Cr5MoSiV1钢注塑成型模具进行硬态高速铣削,研究切削加工参数对切削力的影响;通过多因素法进行正交试验,利用改进的BP神经网络建立切削力的神经网络模型并对工艺参数进行优化,将网络预测结果与现场加工实践数据进行对比。研究结果表明:人工神经网络能准确地预测铣削力,模型具有较强的泛化能力和自适应能力;在高转速、小切深、合适的进给速度以及微量切削液状态下铣削力较小,为优化模具硬态铣削的切削参数并对其实际生产应用提供了较好的依据。 Taking the hard milling of the plastic mold parts(cavity) as an example,using a hardened 4Cr5MoSiV1 steel and AlTiN coated carbide end-milling tool,the empirical model of the cutting force model was carried out with the improved BP neural network and a multi-factorial orthogonal test,the accuracy of the cutting force network prediction was examined by field-processing practice(practice of hard milling of the mold parts).The results show that the artificial neural network can predict the size of milling force well and has strong generalization ability and adaptive capacity;the smaller milling forces can be attained by using higher spindle speed,appropriate feed rate,lower axial and radial depth of milling parameters as well as minimum quantity of lubricant(MQL),which provide a better basis for cutting parameters optimization of hard milling of the plastic mold parts and its manufacture.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第6期2218-2223,共6页 Journal of Central South University:Science and Technology
基金 上海市教委自然科学基金资助项目(gjd-07050) 上海工程技术大学科技发展基金资助项目(2008xy60)
关键词 模具硬态铣削 BP神经网络 铣削力模型 参数优化 hard milling of mold parts improved BP neural network milling force model parameters optimization
  • 相关文献

参考文献13

  • 1Ehmann K F,Kapoor S G,Devor R E,et al.Machining process modelling:A review[J].Journal of Manufacturing Science and Engineering,1997,119(4):655-663.
  • 2Takashi M.Effect of tool stiffness upon tool wear in high spindle speed milling using small ball end mill[J].Journal of the International Societies for Precision Engineering and Nanotechnology,2001,25(2):145-154.
  • 3Kim G M,Cho P J,Chu C N.Cutting force prediction of sculptured surface ball-end milling using Z-map[J].International Journal of Machine Tools & Manufacture,2000,40(2):277-291.
  • 4Li H Z,Zhang W B,Li X P.Modelling of cutting forces in helical end milling using a predictive machining theory[J].International Journal of Mechanical Sciences,2001,43(8):1711-1730.
  • 5Lee T S,Lin Y J.A 3D predictive cutting-force model for end milling of parts having sculptured surfaces[J].Int J Adv Manuf Technol,2000,16(11):773-783.
  • 6Lee P,Altintas Y.Prediction of ball-end milling forces from orthogonal cutting data[J].Int J Mach Tools Manufact,1996,36(9):1059-1072.
  • 7Yun W S,Cho D W.Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling[J].International Journal of Machine Tools & Manufacture,2001,41(4):463-478.
  • 8Fuh K H,Hwang R M.A predicted milling force model for high-speed end milling operation[J].Int J Mach Tools Manufact,1997,37(7):969-979.
  • 9Azeem A,Feng H Y,WANG Li-hui.Simplified efficient calibration of a mechanistic cutting force model for ball-end milling[J].International Journal of Machine Tools & Manufacture,2004,44(2/3):291-298.
  • 10Ikua B W,Tanaka H,Obata F,et al.Prediction of cutting forces and machining error in ball end milling of curved surfaces (Ⅱ):Experimental verification[J].Journal of the International Societies for Precision Engineering and Nanotechnology,2002,26(1):69-82.

二级参考文献13

共引文献2

同被引文献31

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部