期刊文献+

紫色光合细菌捕获太阳能的分子机理 被引量:4

Molecular Mechanism of Solar Energy Harvesting by Purple Photosynthetic Bacteria
原文传递
导出
摘要 光合作用是地球上最重要的化学反应,生物体通过它捕获太阳能,转为化学能供生长繁殖需要.光合细菌是地球上最早出现的具有原始光能合成体系的微生物,其光合反应中心是一个由多种色素分子与蛋白质以非共价键方式结合的、具有特定构象的色素-蛋白复合体-光反应中心RC(Reaction center)和LH(Light Harvesting),光能通过电荷分离及电子转移反应转化为化学能,其效率是当前人工模拟远远不能及的.本文综述了紫色光合细菌捕获太阳能的分子结构、作用机理的研究进展,并结合作者在R.sphaeroides LHII蛋白组份同源及异源基因表达方面的研究结果进行相应的分析,明确了Rhodobacter sphaeroides基因组中同源基因puc2BA的表达特点和功能,Rhodovulum sulfidophilum pucsBA与R.sphaeroides pufBA能够同时在R.sphaeroides中表达,能同时形成LHII和LHI,并具有能量传递功能. Photosynthesis is arguably the most important biological process,by it organisms harvest solar energy and transfer it into chemical energy for growth and reproduction.The photosynthetic bacteria are the earliest microbe with photosynthesis found on earth.The photosynthetic apparatus of purple bacteria is a nanometric assembly in the intracytoplasmic membranes and consists of pigment-protein complexes,the photosynthetic RC(Reaction center) and LH(Light harvesting).The primary processes of photosynthesis involve absorption of photons by LH complexes,transfer of excitation energy from the LH complexes to the photosynthetic RC,where the primary energy conversion takes place.The researches on molecular structure and mechanism of purple photosynthetic bacteria harvesting solar energy were summarized.Molecular biology techniques and spectroscopic analysis were applied to research the expression and function of puc2BA and pucsBA by the authors,and it was concluded that the puc2BA gene was normally expressed in Rhodobacter sphaeroides,the pucsBA gene of Rhodovulum sulfidophilum and the pufBA gene of R.sphaeroides were expressed in R.sphaeroides,and the heterologous LHII and native LHI were produced and assembled in the membrane.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2011年第1期138-143,共6页 Chinese Journal of Applied and Environmental Biology
基金 国家科技部"863"计划项目(No.2006AA02Z138) 国家自然科学基金项目(Nos.30600044 30771464) 重庆市自然科学基金项目(Nos.2006BB1193 2007BB5414)~~
关键词 紫色光合细菌 太阳能 捕光蛋白 分子机理 purple photosynthetic bacteria solar energy light-harvesting protein molecular mechanism
  • 相关文献

参考文献48

  • 1Bahatyrova S, Frese RN, Siebert CA, Olsen JD, Van Der Werf KO, Van Grondelle R, Niederman RA, Bullough PA, Otto C, Hunter CN. The native architecture of a photosynthetic membrane. Nature, 2004, 430: 1058-1062.
  • 2Garcia-Martin A, Kwa LG, Strohmann B . Structural role of (bacterio) chlorophyll ligated in the energetically unfavorable beta-position. J Biol Chem, 2006, 281: 10626-10634.
  • 3Fowler GJS, Sockalingam GD, Robert B, Hunter CN. Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting LH2 mutants of Rhodobacter sphaeroides with alterations at a Tyr44 and a Tyr45. Biochem J, 1994, 299: 695-700.
  • 4Hu XC, Damjanovi? A, Ritz T, Schulten K. Photosynthetic apparatus of purple bacteria. Q Rev Biophys, 2002, 35: 1-62.
  • 5Gudowska-Nowak E, Newton MD, Fajer J. Conformational and environmental effects on bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural results. J Phys Chem, 1990, 94: 5795-5801.
  • 6Kwa LG, García-Martín A, Végh AP, Strohmann B , Robert B , Braun P. Hydrogen bonding in a model bacteriochlorophyll-binding site drives assembly of light harvesting complex. J Biol Chem, 2004, 279 (15): 15067-15075.
  • 7Barz WP, Francia F, Venturoli G, Melandri BA, Verméglio A, Oesterhelt D. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions. Biochemistry, 1995, 34: 15235-15247.
  • 8Koblízek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA. Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophylla fluorescence. Biochim Biophys Acta, 2005, 1706: 220-231.
  • 9Barz WP, Verméglio A, Francia F, Venturoli G, Melandri BA, Oesterhelt D. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required of efficient ubiquinone/ubiquinol exchange between the reaction centre Q(B) site and the cytochrome b/c1complex. Biochemistry, 1995, 34: 15248-15258.
  • 10Palsdottir H, Hunte C. Lipids in membrane protein structures. Biochim Biophys Acta, 2004, 1666: 2-18.

二级参考文献10

  • 1Levin DB, Pitt L, Love M. Biohydrogen production: Prospects and limitations to practical application. Intern J Hydrogen Energy, 2004, 29 (2): 173-185.
  • 2Das D, Veziroglu TN. Hydrogen production by biological processes: A survey of literature. Intern J Hydrogen Energy, 2001, 26 (1): 13-28.
  • 3Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L. Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. J Biotechnol, 1999, 70 (1-3): 103 -113.
  • 4Vrabl P, Mutschlechner W, Burgstaller W. Characteristics of glucose uptake by glucose-NH4-limited grown Penicillium ochrochloron at low, medium and high glucose concentration. Fungal Genetics & Biol, 2008, 45 (10): 1380-1392.
  • 5Rizzi M, Theobald U, Querfurth E, Rohrhirsch T, Baltes M, Reuss M. In vivo investigations of glucose transport in Saccharomyces cerevisiae. Biotechnol & Bioengin, 1996, 49 (3): 316-327.
  • 6Kotyk A, Kleinzeller A. Transport of D-xylose and sugar space in baker’s yeast. Folia Microbiol, 1963, 8 (3): 156-161.
  • 7Wilkins PO, Cirill VP. Sorbose counterflow as a measure of intracellular glucose in baker’s yeast. J Bacteriol, 1965, 90 (6): 1605-1610.
  • 8Wayman FM, Mattey M, Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol & Bioengin, 1999, 67 (4): 451-456.
  • 9Papagianni M, Mattey M. Modeling the mechanisms of glucose transport through the cell membrane of Aspergillus niger in submerged citric acid fermentation processes. Biochem Engin J, 2004, 20 (1): 7-12.
  • 10Wang YZ (王永忠). Characteristics of mass transfer and hydrogen production of photo-bioreactor with immobilized photosynthetic bacteria: [Doctor’s Degree Dissertation]. Chongqing, China: Chongqing University (重庆: 重庆大学), 2008. 28-31.

共引文献1

同被引文献110

  • 1李志军,罗青红,伍维模,韩路.干旱胁迫对胡杨和灰叶胡杨光合作用及叶绿素荧光特性的影响[J].干旱区研究,2009,26(1):45-52. 被引量:75
  • 2杨文钰,樊高琼,任万君,赵莉,董兆勇,韩惠芳.烯效唑干拌种对小麦光合作用和^(14)C同化物分配的影响[J].作物学报,2005,31(9):1173-1178. 被引量:14
  • 3BACHMANN RC, TADROS MH, OELZE J, et al. Purification and char- acterization of the B875 light-harvesting complex of Rhodopseudomonas sphaeroides [J]. Bioehem Int, 1983, (7): 629-634.
  • 4ZUBER H. Structure and function of light-harvesting complexes and their polypeptides[J]. Phoehem Photobiol, 1985, (42): 821- 825.
  • 5HU XC, SCHULTEN K. Model for the Light-Harvesting Complex I (B875) of Rhodobacter sphaeroides [J]. Bioohys J, 1998, (75): 683-694.
  • 6LANG HP, HUNTER CN. The relationship between carotenoid biosyn- thesis and the assembly of the light-harvesting LHII complex in Rhodobactersphaeroides [J]. Biochem J, 1994, 298: 197-205.
  • 7NAYLOR GW, ADDLESEE HA, GIBSON LCD, et al. Minireview. The photosynthesis gene cluster ofRhodobacter sphaeroides [J]. Photosyn Res, 1999(62): 121-139.
  • 8SILBER MV, GABRIEL G, STROHMANN B, et al. Fine ttming of the spectral properties of LH2 by single amino acid residues [J]. Photosyn Res, 2008 96(2): 145-151.
  • 9HAGEMANN GE, KATSIOU E, FORKL H, et al. Gene cloning and regulation of gene expression of the puc operon from Rhodovulum sul- lidophilum [J]. Biochimica et Acta, 1997, 1351: 341-358.
  • 10ERASO JM, KAPLAN S. Oxygen-insensitive synthesis of photosynthet- ic membranes of Rhodobacter sphaeroides: A mutant histidine kinase [J]. J Baeteriol, 1995(177): 2695-2706.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部