期刊文献+

反应扩散的伸缩式投影多尺度模拟方法 被引量:1

Telescoping Projective Methods for the Multiscale Simulation of Reaction-Diffusion Processes
原文传递
导出
摘要 目前在复杂能源系统模拟研究中所面临的各类反应扩散问题越来越复杂,其在宏观上已不能有效模拟,在细小尺度上由于内存开销巨大与CPU耗时过长实施模拟极为困难。基于此,本文提出一种反应扩散的伸缩式投影多尺度模拟方法(RDTPM)。该方法只需通过反应扩散的细小仿真器计算少量演化步,用伸缩式投影积分方式对仿真器演化得到的反应物浓度进行合理的外推处理,即能准确快速地获取后续演化步的反应物浓度,从而满足反应扩散的研究所需。分别利用动态学蒙特卡洛模拟(KMC)和格子玻尔兹曼方法(LBM)建立反应扩散的细小仿真器,通过对Schlogl、Selkov反应扩散过程的多尺度模拟结果证明所提方法的准确性和高效性。 At present,various reaction-diffusion problems existed in the simulation research of complex energy systems are becoming increasingly complicated,consequently,they could not be effectively conducted at macro-scale level and they are also very difficult to simulate at a fine level because of overhead memory and too much CPU time.For these reasons telesoping projective methods for the multiscale simulation of reaction-diffusion(RDTPM) is proposed.This methods only need to calculate a small amount of evolution steps by fine scale simulators of reaction-diffusion,and then the obtained reactant concentration is reasonably extrapolated using teleprojective integration,the concentration of follow-up evolution steps could be obtained quickly and precisely.The kinetic Monte Carlo(KMC)and lattice Boltzmann method(LBM) are used to establish fine scale simulators of reaction-diffusion,and the multiscale simulation results of Schlogl,Selkov reaction-diffusion processes show that the proposed methods are accurate and efficient.
作者 杨晨 彭伟
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第3期377-381,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50876117) 中央高校基本科研业务费资助(No.CDJXS11140001)
关键词 反应扩散 动态学蒙特卡洛方法 格子玻尔兹曼方法 多尺度模拟 reaction-diffusion kinetic Monte Carlo method lattice boltzmann method multiscale simulation
  • 相关文献

参考文献11

  • 1Qian Y H, Orszag S A. Scalings in Diffusion-Driven Reaction A+B→C: Numercal Simulations by Lattice BGK Models [J]. Journal of Statistical Physics, 1995, 81:237 253.
  • 2Ponce Dawson S, Chen S, Doolen G D. Lattice Boltzmann Computations for Reaction-Diffusion Equations[J]. The Journal of Chemical Physics, 1993, 98:1514-1523.
  • 3Siettos C I, Rico-Martinez R, Kevrekidis I C. A Systems- Based Approach to Multiscale Computation: Equation- Free Detection of Coarse-Grained Bifurcations [J]. Computers and Chemical Engineering, 2006, 30:1632 1642.
  • 4Zou Y, Kevrekidis I G, Armbruster D. Multiscale Analysis of Re-entrant Production Lines: an Equation-Free Aproach [J]. Physica A, 2006, 363:1-13.
  • 5Erban R, Kevrekidis I G, Othmer H G. An Equation-Free Computational Approach for Extracting Population-Level Behavior from Individual-Based Models of Biological Dis- persal [J]. Physica D, 2006, 215:1-24.
  • 6Kevrekidis I G, Gear C W, Hyman J M, et al. Equation- Free Coarse-Grained Multiscale Computation: Enabling Microscopic Simulators to Perform System-Level Tasks [J]. Comm. Math. Sciences, 2003, 1(4): 715 762.
  • 7A.M.Maluckov,S.Ishiguro,M.M.Skoric.A Macro Projective IntegrationMethod in 2D Microscopic System Applied to Nonlinear Ion Acoustic Waves in a Plasma[J].Communications in Computational Physics,2008,4(8):556-574. 被引量:3
  • 8Gear C W, Kevrekidis I G. Projective Methods for Stiff Differential Equations, Problems with Gaps in their Eigenvalue Spectrum [J]. SIAM Journal on Scientific Computing, 2002, 24(4): 1091-1106.
  • 9Voter A F. Introduction to the Kinetic Monte Carlo Method [J]. NATO Science Series II: Mathematics, Physics and Chemistry, 2007, 235:1-23.
  • 10Gillespie D T. Stochastic Simulation of Chemical Kinetics [J]. The Journal of Physical Chemistry, 2007, 58:35-55.

共引文献2

同被引文献19

  • 1Guo Zhaoli (郭照立), Zheng Chuguang (郑楚光), Li Qing (李青), Wang Nengchao (王能超). Lattice Boltzmann Method for Hydrodynamics (流体动力学的格子 Boltzmann 方法)[M]. Wuhan: Hubei Science & Technology Press, 2002: 158.
  • 2He Yaling (何雅玲), Wang Yong (王勇), Li Qing (李庆). Lattice Boltzmann Method: Theory and Applications (格子Boltzmann方法的理论及应用) [M]. Beijing: Science Press, 2008: 156.
  • 3Deen N G, van Sint Annaland M, Kuipers J A M. Multi-scale modeling of dispersed gas-liquid two-phase flow [J]. Chemical Engineering Science, 2004, 59 (8): 1853-1861.
  • 4Armaou A, Kevrekidis I G, Theodoropoulos C. Equation-free gaptooth-based controller design for distributed complex/multiscale processes [J]. Computers & Chemical Engineering, 2005, 29 (4): 731-740.
  • 5Kevrekidis I G, Gear C W, Hyman J M, Kevrekidis P G, Runborg O, Theodoropoulos C. Equation-free coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis [J]. Communications in Mathematical Sciences, 2003, 1 (4): 715-762.
  • 6Kevrekidis I G, Gear C W, Hummer G. Equation-free: the computer-aided analysis of complex multiscale systems [J]. AIChE Journal, 2004, 50 (7): 1346-1355.
  • 7Gear C W. Projective integration methods for distributions [J]. NEC Trans., 2001, 130: 1-9.
  • 8Gear C W, Kevrekidis I G. Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum [J]. SIAM Journal on Scientific Computing, 2003, 24 (4): 1091-1106.
  • 9Cisternas J, Gear C W, Levin S, et al. Equation-free modelling of evolving diseases: coarse-grained computations with individual-based models [J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, 460 (2050): 2761-2779.
  • 10Makeev A G, Kevrekidis I G. Equation-free multiscale computations for a lattice-gas model: coarse-grained bifurcation analysis of the NO + CO reaction on Pt (100) [J]. Chemical Engineering Science, 2004, 59 (8): 1733-1743.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部