期刊文献+

一类具有Logistic增长和HollingⅡ类功能反应的免疫模型

An Immune Model with Logistic Growth and Holling Type-Ⅱ Functional Response
原文传递
导出
摘要 研究了一类具有Logistic增长和HollingⅡ类功能反应的免疫模型.以时滞为分支参数,分析了系统正平衡点的稳定性和Hopf分支的存在性;然后利用中心流形定理和规范型方法,给出了分支周期解的分支方向与稳定性的计算公式,利用数值模拟验证了所得结论. A basic model of immune with Logistic growth and Holling type-Ⅱfunctional response has been studied.By choosing the time delay as the parameter,the stability of the positive equilibrium and the existence of the Hopf bifurcation are investigated. By using the normal form theory and the center argument,the explicit formulae which determine the stability and the direction are derived.Finally,numerical simulations supporting our theoretical results are also included.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第2期301-312,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10971037)
关键词 时滞 免疫模型 HollingⅡ类功能反应 Time delay Immune model Holling type-Ⅱ functional response
  • 相关文献

参考文献6

  • 1Buric N., Vasovid N., Sufficiently general framework for simple models of the net immune response, Chaos, Solitons and Fraetals, 2002, 13: 1771-1782.
  • 2Yu W., Cao J., Stability and Hopf bifurcation analysis on a four-neuron BAM neural network with time delays, Physics Letters A, 2006, 351: 64-78.
  • 3Zhang J., Jin Z., Yan J., Sun G., Stability and Hopf bifurcation in a delayed competition system, Nonlinear Analysis: Theory, Methods and Applications, 2009, 70: 658-670.
  • 4Meng X., Han D., Song Y., Stability and Hopf Bifurcation in a non-kolmogorov type Predator-Prey with delay, Mathematical and Computer Modeling, 2005, 41: 1445-1455.
  • 5Ruan S., Wei J., On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous, Dicrete and Impulsive systems Series A: Mathematical Analysis, 2003, 10: 863-874.
  • 6Hassard B., Kazarinoff N., Wan Y., Theory and Applications of Hopf Bifurcation, Cambridge: Cambridge University Press, 1981.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部